Advertisement

Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials

  • Sachin Jain
Article

Abstract

We study transport coefficients of strongly coupled gauge theory in the presence of multiple chemical potential which are dual to rotating D3, M2 and M5 brane. Using the general form of the perturbation equations, we compute electrical conductivity at finite temperature as well as at zero temperature. We also study thermal conductivity for the same class of black holes and show that thermal conductivity and viscosity obeys Wiedemann-Franz like law even in the presence of multiple chemical potential.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

References

  1. [1]
    D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    K. Behrndt, M. Cvetič and W.A. Sabra, Non-extreme black holes of five dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016 [hep-th/0601144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density Dependence of Transport Coefficients from Holographic Hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [SPIRES].MATHCrossRefADSGoogle Scholar
  8. [8]
    N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES].
  9. [9]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  19. [19]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  21. [21]
    S. Jain, S. Mukherji and S. Mukhopadhyay, Notes on R-charged black holes near criticality and gauge theory, JHEP 11 (2009) 051 [arXiv:0906.5134] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
  24. [24]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    E. Imeroni and A. Sinha, Non-relativistic metrics with extremal limits, JHEP 09 (2009) 096 [arXiv:0907.1892] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].CrossRefGoogle Scholar
  27. [27]
    R.-G. Cai, Y. Liu and Y.-W. Sun, Transport Coefficients from Extremal Gauss-Bonnet Black Holes, arXiv:0910.4705 [SPIRES].
  28. [28]
    S.K. Chakrabarti, S. Jain and S. Mukherji, Viscosity to entropy ratio at extremality, JHEP 01 (2010) 068 [arXiv:0910.5132] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFTs dual to Charged BTZ black-hole, arXiv:0909.4051 [SPIRES].
  30. [30]
    B. Sahoo and H.-U. Yee, Holographic chiral shear waves from anomaly, arXiv:0910.5915 [SPIRES].
  31. [31]
    N. Banerjee and S. Dutta, Near-Horizon Analysis of η/s, arXiv:0911.0557 [SPIRES].
  32. [32]
    D.-W. Pang, On Charged Lifshitz Black Holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].CrossRefGoogle Scholar
  33. [33]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  35. [35]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].ADSGoogle Scholar
  37. [37]
    M. Vojta, Y. Zhang, and S. Sachdev, Renormalization group analysis of quantum critical points in d-wave superconductors, Int J. Mod. Phys. b 14 (2000) 3719.ADSGoogle Scholar
  38. [38]
    M. Mueller, L. Fritz, S. Sachdev and J. Schmalian, Graphene: Relativistic transport in a nearly perfect quantum liquid, arXiv:0910.5680.
  39. [39]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].
  42. [42]
    R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].ADSGoogle Scholar
  43. [43]
    S. Jain, Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography, arXiv:0912.2719 [SPIRES].
  44. [44]
    S.S. Gubser, Thermodynamics of spinning D3-branes, Nucl. Phys. B 551 (1999) 667 [hep-th/9810225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 [hep-th/9812121] [SPIRES].ADSGoogle Scholar
  48. [48]
    S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [SPIRES].
  49. [49]
    H. Lü, J.-W. Mei, C.N. Pope and J.F. Vazquez-Poritz, Extremal Static AdS Black Hole/CFT Correspondence in Gauged Supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute of PhysicsBhubaneswarIndia

Personalised recommendations