Advertisement

Emergent quantum near-criticality from baryonic black branes

  • Christopher P. Herzog
  • Igor R. Klebanov
  • Silviu S. Pufu
  • Tiberiu Tesileanu
Article

Abstract

We find new black 3-brane solutions describing the “conifold gauge theory” at nonzero temperature and baryonic chemical potential. Of particular interest is the lowtemperature limit where we find a new kind of weakly curved near-horizon geometry; it is a warped product \(AdS_{2} \times \mathbb{R}^{3} \times T^{1,1} \) with warp factors that are powers of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent quantum near-criticality. We carry out some stability checks for our solutions. We also set up a consistent ansatz for baryonic black 2-branes of M-theory that are asymptotic to AdS 4 × Q 1,1,1.

Keywords

Gauge-gravity correspondence Black Holes in String Theory 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  7. [7]
    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].ADSGoogle Scholar
  8. [8]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  9. [9]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].
  11. [11]
    D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with Rsymmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    D. Yamada, Fragmentation of Spinning Branes, Class. Quant. Grav. 25 (2008) 145006 [arXiv:0802.3508] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    D. Yamada, Metastability of R-charged black holes, Class. Quant. Grav. 24 (2007) 3347 [hep-th/0701254] [SPIRES].MATHCrossRefADSGoogle Scholar
  14. [14]
    R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 [hep-th/9812121] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  18. [18]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold, hep-th/0108101 [SPIRES].
  22. [22]
    I.R. Klebanov and A.A. Tseytlin, Gravity Duals of Supersymmetric SU(N) × SU(N +M) Gauge Theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    R. D’Auria, P. Fré and P. van Nieuwenhuizen, \(\mathcal{N} = 2 \) Matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector, Phys. Lett. B 136 (1984) 347 [SPIRES].ADSGoogle Scholar
  24. [24]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES].
  28. [28]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    G. Gibbons and S.A. Hartnoll, A gravitational instability in higher dimensions, Phys. Rev. D 66 (2002) 064024 [hep-th/0206202] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, arXiv:0912.1061 [SPIRES].
  34. [34]
    N. J. Evans and J. Hockings, N = 4 super Yang Mills at finite density: The naked truth, JHEP 07 (2002) 070 [hep-th/0205082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    D.N. Page and C.N. Pope, Which compactifications of D = 11 supergravity are stable?, Phys. Lett. B 144 (1984) 346 [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Christopher P. Herzog
    • 1
  • Igor R. Klebanov
    • 1
    • 2
  • Silviu S. Pufu
    • 1
  • Tiberiu Tesileanu
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.
  2. 2.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonU.S.A.

Personalised recommendations