New physics signals in longitudinal gauge boson scattering at the LHC

  • Tao Han
  • David Krohn
  • Lian-Tao Wang
  • Wenhan Zhu


We introduce a novel technique designed to look for signatures of new physics in vector boson fusion processes at the TeV scale. This functions by measuring the polarization of the vector bosons to determine the relative longitudinal to transverse production. In studying this ratio we can directly probe the high energy E 2-growth of longitudinal vector boson scattering amplitudes characteristic of models with non-Standard Model (SM) interactions. We will focus on studying models parameterized by an effective Lagrangian that include a light Higgs with non-SM couplings arising from TeV scale new physics associated with the electroweak symmetry breaking, although our technique can be used in more general scenarios. We will show that this technique is stable against the large uncertainties that can result from variations in the factorization scale, improving upon previous studies that measure cross section alone.


Higgs Physics Beyond Standard Model Hadronic Colliders 


  1. [1]
    ALEPH, DELPHI, L3, OPAL, SLD collaboration, LEP Electroweak Working Group, SLD Electroweak, Heavy avour Groups, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].ADSGoogle Scholar
  2. [2]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    C.N. Leung, S.T. Love and S. Rao, Low-Energy manifestations of a new interaction scale: operator analysis, Z. Phys. C 31 (1986) 433 [SPIRES].ADSGoogle Scholar
  7. [7]
    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [SPIRES].ADSGoogle Scholar
  8. [8]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy constraints on electroweak three gauge boson couplings, Phys. Lett. B 283 (1992) 353 [SPIRES].ADSGoogle Scholar
  9. [9]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [SPIRES].ADSGoogle Scholar
  10. [10]
    Particle Data Group collaboration, K. Hagiwara et al., Review of particle physics, Phys. Rev. D 66 (2002) 010001 [SPIRES].ADSGoogle Scholar
  11. [11]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [SPIRES].ADSGoogle Scholar
  12. [12]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [SPIRES].ADSGoogle Scholar
  14. [14]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the higgs boson mass, Phys. Rev. D 16 (1977) 1519 [SPIRES].ADSGoogle Scholar
  15. [15]
    M.J.G. Veltman, Second threshold in weak interactions, Acta Phys. Polon. B 8 (1977) 475 [SPIRES].Google Scholar
  16. [16]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W's and Z's, Nucl. Phys. B 261 (1985) 379 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, arXiv:0907.5413 [SPIRES].
  18. [18]
    J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].ADSGoogle Scholar
  20. [20]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  21. [21]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    J. Bagger, S. Dawson and G. Valencia, Effective field theory calculation of ppV L V L X, Nucl. Phys. B 399 (1993) 364 [hep-ph/9204211] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    V.D. Barger, K.-m. Cheung, T. Han and R.J.N. Phillips, Strong W + W + scattering signals at pp supercolliders, Phys. Rev. D 42 (1990) 3052 [SPIRES].ADSGoogle Scholar
  24. [24]
    M.S. Chanowitz, Strong W W scattering at the end of the 90's: Theory and experimental prospects, hep-ph/9812215 [SPIRES].
  25. [25]
    D.A. Dicus, J.F. Gunion and R. Vega, Isolating the scattering of longitudinal W+'s at the SSC using like sign dileptons, Phys. Lett. B 258 (1991) 475 [SPIRES].ADSGoogle Scholar
  26. [26]
    V.D. Barger, K.-m. Cheung, T. Han, J. Ohnemus and D. Zeppenfeld, A comparative study of the benefits of forward jet tagging in heavy Higgs production at the SSC, Phys. Rev. D 44 (1991) 1426 [SPIRES].ADSGoogle Scholar
  27. [27]
    V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Bagger et al., The strongly interacting WW system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].ADSGoogle Scholar
  29. [29]
    G.J. Gounaris, J. Layssac and F.M. Renard, Vector boson pair production at supercollider: Useful approximate helicity amplitudes, Z. Phys. C 62 (1994) 139 [hep-ph/9309324] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Ballestrero, G. Bevilacqua, D.B. Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP 11 (2009) 126 [arXiv:0909.3838] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    K. Cheung, C.-W. Chiang and T.-C. Yuan, Partially strong WW scattering, Phys. Rev. D 78 (2008) 051701 [arXiv:0803.2661] [SPIRES].ADSGoogle Scholar
  32. [32]
    H.-J. He, Y.-P. Kuang, C.P. Yuan and B. Zhang, Anomalous gauge interactions of the Higgs boson: Precision constraints and weak boson scatterings, Phys. Lett. B 554 (2003) 64 [hep-ph/0211229] [SPIRES].ADSGoogle Scholar
  33. [33]
    B. Zhang, Y.-P. Kuang, H.-J. He and C.P. Yuan, Testing anomalous gauge couplings of the Higgs boson via weak-boson scatterings at the LHC, Phys. Rev. D 67 (2003) 114024 [hep-ph/0303048] [SPIRES].ADSGoogle Scholar
  34. [34]
    H.-J. He, Y.-P. Kuang and C.P. Yuan, Global power counting analysis on probing electroweak symmetry breaking mechanism at high-energy colliders, Phys. Lett. B 382 (1996) 149 [hep-ph/9604309] [SPIRES].ADSGoogle Scholar
  35. [35]
    Y.-H. Qi, Y.-P. Kuang, B.-J. Liu and B. Zhang, Anomalous gauge couplings of the Higgs boson at the CERN LHC: semileptonic mode in WW scatterings, Phys. Rev. D 79 (2009) 055010 [arXiv:0811.3099] [SPIRES].ADSGoogle Scholar
  36. [36]
    H.-J. He et al., LHC signatures of new gauge bosons in minimal Higgsless model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [SPIRES].ADSGoogle Scholar
  37. [37]
    H.J. He, Y.P. Kuang and C.P. Yuan, Estimating the sensitivity of LHC to electroweak symmetry breaking: longitudinal/goldstone boson equivalence as a criterion, Phys. Rev. D 55 (1997) 3038 [hep-ph/9611316] [SPIRES].ADSGoogle Scholar
  38. [38]
    R.N. Cahn, S.D. Ellis, R. Kleiss and W.J. Stirling, Transverse momentum signatures for heavy higgs bosons, Phys. Rev. D 35 (1987) 1626 [SPIRES].ADSGoogle Scholar
  39. [39]
    V.D. Barger, T. Han and R.J.N. Phillips, Improving the heavy Higgs boson two charged lepton - two neutrino signal, Phys. Rev. D 37 (1988) 2005 [SPIRES].ADSGoogle Scholar
  40. [40]
    R. Kleiss and W.J. Stirling, Tagging the Higgs, Phys. Lett. B 200 (1988) 193 [SPIRES].ADSGoogle Scholar
  41. [41]
    V.D. Barger, R.J.N. Phillips and D. Zeppenfeld, Mini - jet veto: A tool for the heavy Higgs search at the LHC, Phys. Lett. B 346 (1995) 106 [hep-ph/9412276] [SPIRES].ADSGoogle Scholar
  42. [42]
    R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [SPIRES].ADSGoogle Scholar
  43. [43]
    G.L. Kane, W.W. Repko and W.B. Rolnick, The effective W ±, Z 0 approximation for high-energy collisions, Phys. Lett. B 148 (1984) 367 [SPIRES].ADSGoogle Scholar
  44. [44]
    S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Physical gluons and high ET jets, Phys. Lett. B 604 (2004) 61 [hep-ph/0410230] [SPIRES].ADSGoogle Scholar
  46. [46]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    M. Cacciari, G.P. Salam and G. Soyez, The \(\bar{k}_t \) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    M. Cacciari, G. Salam and G. Soyez, FastJet,
  49. [49]
    B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W - production via vector-boson fusion, JHEP 07 (2006) 015 [hep-ph/0603177] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev. D 73 (2006) 113006 [hep-ph/0604200] [SPIRES].ADSGoogle Scholar
  51. [51]
    G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+Z and W-Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].ADSGoogle Scholar
  52. [52]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  53. [53]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  55. [55]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep- inelastic scattering, hep-ph/9907280 [SPIRES].
  57. [57]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    D. Krohn, J. Thaler and L.-T. Wang, Jets with variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].ADSGoogle Scholar
  62. [62]
    R.S. Chivukula, D.A. Dicus, H.-J. He and S. Nandi, Unitarity of the higher dimensional standard model, Phys. Lett. B 562 (2003) 109 [hep-ph/0302263] [SPIRES].ADSGoogle Scholar
  63. [63]
    R.S. Chivukula et al., A three site higgsless model, Phys. Rev. D 74 (2006) 075011 [hep-ph/0607124] [SPIRES].ADSGoogle Scholar
  64. [64]
    Y. Nomura, Higgsless theory of electroweak symmetry breaking from warped space, JHEP 11 (2003) 050 [hep-ph/0309189] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  66. [66]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].ADSGoogle Scholar
  67. [67]
    A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].ADSGoogle Scholar
  68. [68]
    A. Birkedal, K. Matchev and M. Perelstein, Collider phenomenology of the Higgsless models, Phys. Rev. Lett. 94 (2005) 191803 [hep-ph/0412278] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    K. Cheung, C.-W. Chiang, Y.-K. Hsiao and T.-C. Yuan, Longitudinal weak gauge bosons scattering in Hidden Z' models, arXiv:0911.0734 [SPIRES].
  70. [70]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    W. Scandale and F. Zimmermann, Scenarios for sLHC and vLHC, Nucl. Phys. Proc. Suppl. 177-178 (2008) 207 [SPIRES].CrossRefGoogle Scholar
  72. [72]
    G.P. Salam, Towards jetography, arXiv:0906.1833 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Tao Han
    • 1
  • David Krohn
    • 2
  • Lian-Tao Wang
    • 2
  • Wenhan Zhu
    • 2
  1. 1.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations