Freeze-in production of FIMP dark matter

  • Lawrence J. Hall
  • Karsten Jedamzik
  • John March-Russell
  • Stephen M. West
Open Access


We propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.


Cosmology of Theories beyond the SM Beyond Standard Model 


  1. [1]
    Ya.B. Zel'dovich, Magnetic model of universe, Zh. Eksp. Teor. Fiz. 48 (1965) 986 [Sov. Phys. JETP 21 (1965) 656].Google Scholar
  2. [2]
    Ya.B. Zel'dovich, L.B. Okun and S.B. Pikelner, Kварки: астрофизический и физико-химический аспекты, (Quarks: the astrophysical and physical-chemistry aspects) Usp. Fiz. Nauk. 84 (1965) 113.Google Scholar
  3. [3]
    H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe, Phys. Rev. Lett. 17 (1966) 712 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    L. Hall, K. Jedamzik, J. March-Russell and S.M. West, Late decay signatures of freeze-in production of FIMP dark matter, OUTP-09 27P [UCB-PTH-09/33].Google Scholar
  5. [5]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G 2 holonomy, Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269] [SPIRES].MATHMathSciNetGoogle Scholar
  7. [7]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [SPIRES].ADSGoogle Scholar
  10. [10]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Hebecker and J. March-Russell, A minimal S 1/(Z 2 × Z2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [SPIRES].ADSGoogle Scholar
  13. [13]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [SPIRES].ADSGoogle Scholar
  14. [14]
    V. Page, Non-thermal right-handed sneutrino dark matter and the ΩDMb problem, JHEP 04 (2007) 021 [hep-ph/0701266] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A. de Gouvêa, S. Gopalakrishna and W. Porod, Stop decay into right-handed sneutrino LSP at hadron colliders, JHEP 11 (2006) 050 [hep-ph/0606296] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP 05 (2006) 005 [hep-ph/0602027] [SPIRES].ADSGoogle Scholar
  17. [17]
    A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [SPIRES].ADSGoogle Scholar
  19. [19]
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, arXiv:0905.4720 [SPIRES].
  21. [21]
    B. Holdom, Two U(1)'s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, arXiv:0909.5440 [SPIRES].
  25. [25]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [SPIRES].ADSGoogle Scholar
  26. [26]
    S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [SPIRES].ADSGoogle Scholar
  29. [29]
    F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [SPIRES].
  30. [30]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [SPIRES].ADSGoogle Scholar
  31. [31]
    CMS collabroation, Searching for stopped gluinos during beam-off periods at CMS, CMS-PAS-EXO-09-001.Google Scholar
  32. [32]
    K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  33. [33]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    The Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    HESS collaboration, F. Aharonian et al., The H.E.S.S. survey of the inner galaxy in very high-energy gamma-rays, Astrophys. J. 636 (2006) 777 [astro-ph/0510397] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    HESS collaboration, F. Aharonian, A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S, arXiv:0809.3894 [SPIRES].
  38. [38]
    H.E. S. S. C.F. Aharonian, Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    J. McDonald, Thermally generated gauge singlet scalars as self-interacting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Arvanitaki et al., Astrophysical probes of unification, Phys. Rev. D 79 (2009) 105022 [arXiv:0812.2075] [SPIRES].ADSGoogle Scholar
  42. [42]
    A. Arvanitaki et al., Decaying dark matter as a probe of unification and TeV spectroscopy, Phys. Rev. D 80 (2009) 055011 [arXiv:0904.2789] [SPIRES].ADSGoogle Scholar
  43. [43]
    K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2006) 30 [hep-ph/0511003] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    J. McDonald and N. Sahu, keV warm dark matter via the supersymmetric Higgs portal, Phys. Rev. D 79 (2009) 103523 [arXiv:0809.0247] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Lawrence J. Hall
    • 1
    • 2
    • 3
  • Karsten Jedamzik
    • 4
  • John March-Russell
    • 5
  • Stephen M. West
    • 6
    • 7
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Theoretical Physics GroupLBNLBerkeleyU.S.A.
  3. 3.Institute for the Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan
  4. 4.Laboratoire de Physique Theorique et AstroparticulesUMR5207-CNRSMontpellierFrance
  5. 5.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  6. 6.Royal HollowayUniversity of LondonEghamU.K.
  7. 7.Rutherford Appleton LaboratoryChiltonU.K.

Personalised recommendations