A finely-predicted Higgs boson mass from a finely-tuned weak scale

  • Lawrence J. Hall
  • Yasunori Nomura
Open Access


If supersymmetry is broken directly to the Standard Model at energies not very far from the unified scale, the Higgs boson mass lies in the range (128–141) GeV. The end points of this range are tightly determined. Theories with the Higgs boson dominantly in a single supermultiplet predict a mass at the upper edge, (141 ± 2) GeV, with the uncertainty dominated by the experimental errors on the top quark mass and the QCD coupling. This edge prediction is remarkably insensitive to the supersymmetry breaking scale and to supersymmetric threshold corrections so that, in a wide class of theories, the theoretical uncertainties are at the level of ±0.4 GeV. A reduction in the uncertainties from the top quark mass and QCD coupling to the level of ±0.3 GeV may be possible at future colliders, increasing the accuracy of the confrontation with theory from 1.4% to 0.4%. Verification of this prediction would provide strong evidence for supersymmetry, broken at a very high scale of ≈1014±2 GeV, and also for a Higgs boson that is elementary up to this high scale, implying fine-tuning of the Higgs mass parameter by ≈20–28 orders of magnitude. Currently, the only known explanation for such fine-tuning is the multiverse.


Supersymmetry Breaking Beyond Standard Model Superstring Vacua 


  1. [1]
    H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of interactions in unified gauge theories, Phys. Rev. Lett. 33 (1974) 451 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [SPIRES].ADSGoogle Scholar
  3. [3]
    T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [SPIRES].ADSGoogle Scholar
  4. [4]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    Supernova Cosmology Project collaboration, M. Kowalski et al., Improved cosmological constraints from new, old and combined supernova datasets, Astrophys. J. 686 (2008) 749 [arXiv:0804.4142] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].
  11. [11]
    M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [SPIRES].ADSGoogle Scholar
  16. [16]
    F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [SPIRES].
  17. [17]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [SPIRES].ADSGoogle Scholar
  18. [18]
    Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].
  19. [19]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Bethke, The 2009 Wolrd Average of α s(M Z), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear collider physics resource book for Snowmass 2001. 1: introduction, hep-ex/0106055 [SPIRES].
  22. [22]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear collider physics resource book for Snowmass 2001. 2: Higgs and supersymmetry studies, hep-ex/0106056 [SPIRES].
  23. [23]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear collider physics resource book for Snowmass 2001. 3: studies of exotic and standard model physics, hep-ex/0106057 [SPIRES].
  24. [24]
    American Linear Collider Working Group collaboration, T. Abe et al., Linear collider physics resource book for Snowmass 2001. 4: theoretical, accelerator and experimental options, hep-ex/0106058 [SPIRES].
  25. [25]
    N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [SPIRES].
  26. [26]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [SPIRES].ADSGoogle Scholar
  27. [27]
    G. Elor, H.-S. Goh, L. J. Hall, P. Kumar and Y. Nomura, Environmentally selected WIMP dark matter with high-scale supersymmetry breaking, to appear.Google Scholar
  28. [28]
    M. Binger, Higgs boson mass in split supersymmetry at two-loops, Phys. Rev. D 73 (2006) 095001 [hep-ph/0408240] [SPIRES].ADSGoogle Scholar
  29. [29]
    V. Barger, C.-W. Chiang, J. Jiang and T. Li, Axion models with high-scale supersymmetry breaking, Nucl. Phys. B 705 (2005) 71 [hep-ph/0410252] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    V. Barger, J. Jiang, P. Langacker and T. Li, Gauge coupling unification in the standard model, Phys. Lett. B 624 (2005) 233 [hep-ph/0503226] [SPIRES].ADSGoogle Scholar
  31. [31]
    V. Barger, J. Jiang, P. Langacker and T. Li, Non-canonical gauge coupling unification in high-scale supersymmetry breaking, Nucl. Phys. B 726 (2005) 149 [hep-ph/0504093] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    D. Emmanuel-Costa and R. Gonzalez Felipe, Minimal string-scale unification of gauge couplings, Phys. Lett. B 623 (2005) 111 [hep-ph/0505257] [SPIRES].ADSGoogle Scholar
  33. [33]
    I. Gogoladze, T. Li and Q. Shafi, Higgs boson mass from orbifold GUTs, Phys. Rev. D 73 (2006) 066008 [hep-ph/0602040] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [SPIRES].ADSGoogle Scholar
  35. [35]
    R. Barbieri, L.J. Hall and Y. Nomura, A constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [SPIRES].ADSGoogle Scholar
  36. [36]
    Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    D.E. Kaplan and N. Weiner, Radion mediated supersymmetry breaking as a Scherk-Schwarz theory, hep-ph/0108001 [SPIRES].
  40. [40]
    R. Barbieri, L.J. Hall and Y. Nomura, Models of Scherk-Schwarz symmetry breaking in 5D: classification and calculability, Nucl. Phys. B 624 (2002) 63 [hep-th/0107004] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    R. Barbieri et al., Radiative electroweak symmetry breaking from a quasi-localized top quark, Nucl. Phys. B 663 (2003) 141 [hep-ph/0208153] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of and Ω from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    A. Vilenkin, The birth of inflationary universes, Phys. Rev. D 27 (1983) 2848 [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    A.D. Linde, Eternally existing selfreproducing chaotic inflationary universe, Phys. Lett. B 175 (1986) 395 [SPIRES].ADSGoogle Scholar
  47. [47]
    A.D. Linde, Eternal chaotic inflation, Mod. Phys. Lett. A 1 (1986) 81 [SPIRES].ADSGoogle Scholar
  48. [48]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  49. [49]
    B. Feldstein, L.J. Hall and T. Watari, Landscape predictions for the Higgs boson and top quark masses, Phys. Rev. D 74 (2006) 095011 [hep-ph/0608121] [SPIRES].ADSGoogle Scholar
  50. [50]
    I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass from gauge-Higgs unification, Phys. Lett. B 655 (2007) 257 [arXiv:0705.3035] [SPIRES].ADSGoogle Scholar
  51. [51]
    L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [SPIRES].ADSGoogle Scholar
  52. [52]
    C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149 [astro-ph/9909295] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    R. Bousso, L.J. Hall and Y. Nomura, Multiverse understanding of cosmological coincidences, Phys. Rev. D 80 (2009) 063510 [arXiv:0902.2263] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Berkeley Center for Theoretical Physics, Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  3. 3.Institute for the Physics and Mathematics of the UniverseUniversity of TokyoKashiwaJapan

Personalised recommendations