Advertisement

Gauge-Higgs dark matter

  • Naoyuki Haba
  • Shigeki Matsumoto
  • Nobuchika Okada
  • Toshifumi Yamashita
Article

Abstract

When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1) X gauge-Higgs unification model compactified on the S 1/Z 2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.

Keywords

Cosmology of Theories beyond the SM Gauge Symmetry Field Theories in Higher Dimensions Spontaneous Symmetry Breaking 

References

  1. [1]
    N.S. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    D.B. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [SPIRES].ADSGoogle Scholar
  3. [3]
    D.B. Fairlie, Higgs’ fields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [SPIRES].ADSGoogle Scholar
  4. [4]
    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [SPIRES].ADSGoogle Scholar
  5. [5]
    Y. Hosotani, Dynamics of nonintegrable phases and gauge symmetry breaking, Annals Phys. 190 (1989) 233 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett. B 129 (1983) 193 [SPIRES].ADSGoogle Scholar
  7. [7]
    Y. Hosotani, Dynamical gauge symmetry breaking and left-right asymmetry in higher dimensional theories, Phys. Rev. D 29 (1984) 731 [SPIRES].ADSGoogle Scholar
  8. [8]
    N.V. Krasnikov, Ultraviolet fixed point behavior of the five-dimensional Yang-Mills theory, the gauge hierarchy problem and a possible new dimension at the TeV scale, Phys. Lett. B 273 (1991) 246 [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    H. Hatanaka, T. Inami and C.S. Lim, The gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601 [hep-th/9805067] [SPIRES].ADSGoogle Scholar
  10. [10]
    G.R. Dvali, S. Randjbar-Daemi and R. Tabbash, The origin of spontaneous symmetry breaking in theories with large extra dimensions, Phys. Rev. D 65 (2002) 064021 [hep-ph/0102307] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    C. Csáki, C. Grojean and H. Murayama, Standard model Higgs from higher dimensional gauge fields, Phys. Rev. D 67 (2003) 085012 [hep-ph/0210133] [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    N. Haba and Y. Shimizu, Gauge-Higgs unification in the 5 dimensional E 6 , E 7 and E 8 GUTs on orbifold, Phys. Rev. D 67 (2003) 095001 [Erratum ibid. 69 (2004) 059902] [hep-ph/0212166] [SPIRES].ADSGoogle Scholar
  16. [16]
    I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left-right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    I. Gogoladze, Y. Mimura and S. Nandi, Unification of gauge, Higgs and matter in extra dimensions, Phys. Lett. B 562 (2003) 307 [hep-ph/0302176] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    K.-w. Choi et al., Electroweak symmetry breaking in supersymmetric gauge - Higgs unification models, JHEP 02 (2004) 037 [hep-ph/0312178] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    C.A. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, Gauge-Higgs unification in orbifold models, JHEP 02 (2004) 049 [hep-th/0312267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    C.S. Lim and N. Maru, Towards a realistic grand gauge-Higgs unification, Phys. Lett. B 653 (2007) 320 [arXiv:0706.1397] [SPIRES].ADSGoogle Scholar
  24. [24]
    N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in gauge-Higgs unification on orbifold, Phys. Rev. D 70 (2004) 015010 [hep-ph/0401183] [SPIRES].ADSGoogle Scholar
  25. [25]
    N. Haba and T. Yamashita, Dynamical symmetry breaking in gauge-Higgs unification of 5D N = 1 SUSY theory, JHEP 04 (2004) 016 [hep-ph/0402157] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    N. Haba, K. Takenaga and T. Yamashita, Higgs mass in the gauge-Higgs unification, Phys. Lett. B 615 (2005) 247 [hep-ph/0411250] [SPIRES].ADSGoogle Scholar
  27. [27]
    N. Haba, S. Matsumoto, N. Okada and T. Yamashita, Effective theoretical approach of gauge-Higgs unification model and its phenomenological applications, JHEP 02 (2006) 073 [hep-ph/0511046] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge symmetry breaking and mass generation on the orbifold \( {{{T^2}} \mathord{\left/{\vphantom {{{T^2}} {{\mathbb{Z}_2}}}} \right.} {{\mathbb{Z}_2}}} \), Phys. Rev. D 69 (2004) 125014 [hep-ph/0403106] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [SPIRES].ADSGoogle Scholar
  30. [30]
    K. Hasegawa, C.S. Lim and N. Maru, An attempt to solve the hierarchy problem based on gravity gauge Higgs unification scenario, Phys. Lett. B 604 (2004) 133 [hep-ph/0408028] [SPIRES].ADSGoogle Scholar
  31. [31]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].ADSGoogle Scholar
  35. [35]
    Y. Hosotani and M. Mabe, Higgs boson mass and electroweak-gravity hierarchy from dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 615 (2005) 257 [hep-ph/0503020] [SPIRES].ADSGoogle Scholar
  36. [36]
    Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [SPIRES].ADSGoogle Scholar
  37. [37]
    Y. Sakamura and Y. Hosotani, WWZ, WWH and ZZH couplings in the dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 645 (2007) 442 [hep-ph/0607236] [SPIRES].ADSGoogle Scholar
  38. [38]
    Y. Sakamura, Effective theories of gauge-Higgs unification models in warped spacetime, Phys. Rev. D 76 (2007) 065002 [arXiv:0705.1334] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    Y. Hosotani and Y. Sakamura, Anomalous Higgs couplings in the SO(5) × U(1)B−L gauge-Higgs unification in warped spacetime, Prog. Theor. Phys. 118 (2007) 935 [hep-ph/0703212] [SPIRES].MATHCrossRefADSGoogle Scholar
  40. [40]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  43. [43]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    A. Falkowski, S. Pokorski and J.P. Roberts, Modelling strong interactions and longitudinally polarized vector boson scattering, JHEP 12 (2007) 063 [arXiv:0705.4653] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    M. Regis, M. Serone and P. Ullio, A dark matter candidate from an extra (non-universal) dimension, JHEP 03 (2007) 084 [hep-ph/0612286] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].ADSGoogle Scholar
  47. [47]
    M. Carena, A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [SPIRES].ADSGoogle Scholar
  48. [48]
    Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs bosons as cold dark matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908.0212] [SPIRES].ADSGoogle Scholar
  49. [49]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  50. [50]
    K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    N. Okada and T. Yamada, The PAMELA andFermi signals from long-lived Kaluza-Klein dark matter, Phys. Rev. D 80 (2009) 075010 [arXiv:0905.2801] [SPIRES].ADSGoogle Scholar
  52. [52]
    Y. Kawamura, Gauge symmetry reduction from the extra space S 1/Z 2, Prog. Theor. Phys. 103 (2000) 613 [hep-ph/9902423] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    Y. Kawamura, Split multiplets, coupling unification and extra dimension, Prog. Theor. Phys. 105 (2001) 691 [hep-ph/0012352] [SPIRES].MATHCrossRefADSGoogle Scholar
  54. [54]
    Y. Kawamura, Triplet-doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    M. Kubo, C.S. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV-scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [SPIRES].ADSGoogle Scholar
  57. [57]
    K. Takenaga, Effect of bare mass on the Hosotani mechanism, Phys. Lett. B 570 (2003) 244 [hep-th/0305251] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    A. Aranda and J.L. Diaz-Cruz, Gauge-Higgs unification with brane kinetic terms, Phys. Lett. B 633 (2006) 591 [hep-ph/0510138] [SPIRES].ADSGoogle Scholar
  59. [59]
    N. Haba and T. Yamashita, The general formula of the effective potential in 5D SU(N) gauge theory on orbifold, JHEP 02 (2004) 059 [hep-ph/0401185] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    N. Haba, K. Takenaga and T. Yamashita, Correct effective potential of supersymmetric Yang-Mills theory on M 4 × S 1, Phys. Rev. D 71 (2005) 025006 [hep-th/0411113] [SPIRES].ADSGoogle Scholar
  61. [61]
    K. Kojima, K. Takenaga and T. Yamashita, Multi-Higgs mass spectrum in gauge-Higgs unification, Phys. Rev. D 77 (2008) 075004 [arXiv:0801.2803] [SPIRES].ADSGoogle Scholar
  62. [62]
    N. Maru and T. Yamashita, Two-loop calculation of Higgs mass in gauge-Higgs unification: 5D massless QED compactified on S 1, Nucl. Phys. B 754 (2006) 127 [hep-ph/0603237] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    Y. Hosotani, N. Maru, K. Takenaga and T. Yamashita, Two loop finiteness of Higgs mass and potential in the gauge-Higgs unification, Prog. Theor. Phys. 118 (2007) 1053 [arXiv:0709.2844] [SPIRES].MATHCrossRefADSGoogle Scholar
  64. [64]
    K.-y. Oda and A. Weiler, Wilson lines in warped space: dynamical symmetry breaking and restoration, Phys. Lett. B 606 (2005) 408 [hep-ph/0410061] [SPIRES].ADSGoogle Scholar
  65. [65]
    N. Haba, S. Matsumoto, N. Okada and T. Yamashita, Effective potential of Higgs field in warped gauge-Higgs unification, Prog. Theor. Phys. 120 (2008) 77 [arXiv:0802.3431] [SPIRES].MATHCrossRefADSGoogle Scholar
  66. [66]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    Y. Adachi, C.S. Lim and N. Maru, Lower bound for compactification scale from muon g − 2 in the gauge-Higgs unification, arXiv:0904.1695 [SPIRES].
  68. [68]
    Y. Adachi, C.S. Lim and N. Maru, Neutron electric dipole moment in the gauge-Higgs unification, Phys. Rev. D 80 (2009) 055025 [arXiv:0905.1022] [SPIRES].ADSGoogle Scholar
  69. [69]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  75. [75]
    H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [SPIRES].ADSGoogle Scholar
  76. [76]
    XMASS collaboration, XMASS. Dark matter search experiment, http://cdms.berkeley.edu/.
  77. [77]
    SCDMS collaboration, Cryogenic Dark Matter Search homepage, http://xenon.astro.columbia.edu/.
  78. [78]
    XENON collaboration, XENON dark matter project, http://www-sk.icrr.u-tokyo.ac.jp/xmass/index-e.html.

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Naoyuki Haba
    • 1
  • Shigeki Matsumoto
    • 2
  • Nobuchika Okada
    • 3
  • Toshifumi Yamashita
    • 4
  1. 1.Department of PhysicsOsaka UniversityToyonakaJapan
  2. 2.Department of PhysicsUniversity of ToyamaToyamaJapan
  3. 3.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaU.S.A.
  4. 4.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations