Advertisement

Open worldsheets for holographic interfaces

  • Marco Chiodaroli
  • Eric D’Hoker
  • Michael Gutperle
Open Access
Article

Abstract

Type IIB supergravity admits Janus and multi-Janus solutions with eight unbroken supersymmetries that are locally asymptotic to AdS 3 × S 3 × M 4 (where M 4 is either T 4 or K 3). These solutions are dual to two or more CFTs defined on half-planes which share a common line interface. Their geometry consists of an AdS 2 × S 2 × M 4 fibration over a simply connected Riemann surface Σ with boundary.

In the present paper, we show that regular exact solutions exist also for surfaces Σ which are not simply connected. Specifically, we construct in detail solutions for which Σ has the topology of an annulus. This construction is generalized to produce solutions for any surface Σ with the topology of an open string worldsheet with g holes.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [SPIRES].
  6. [6]
    E. Witten, On the conformal field theory of the Higgs branch, JHEP 07 (1997) 003 [hep-th/9707093] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    C. Vafa, Instantons on D-branes, Nucl. Phys. B 463 (1996) 435 [hep-th/9512078] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    R. Dijkgraaf, Instanton strings and hyperKähler geometry, Nucl. Phys. B 543 (1999) 545 [hep-th/9810210] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    C. Bachas, Asymptotic symmetries of AdS 2 branes, hep-th/0205115 [SPIRES].
  13. [13]
    C. Bachas, On the symmetries of classical string theory, arXiv:0808.2777 [SPIRES].
  14. [14]
    J. Raeymaekers and K.P. Yogendran, Supersymmetric D-branes in the D1 – D5 background, JHEP 12 (2006) 022 [hep-th/0607150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Yamaguchi, AdS branes corresponding to superconformal defects, JHEP 06 (2003) 002 [hep-th/0305007] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Raju, Counting giant gravitons in AdS 3, Phys. Rev. D 77 (2008) 046012 [arXiv:0709.1171] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    G. Mandal, S. Raju and M. Smedback, Supersymmetric giant graviton solutions in AdS 3, Phys. Rev. D 77 (2008) 046011 [arXiv:0709.1168] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    K. Skenderis and M. Taylor, Branes in AdS and pp-wave spacetimes, JHEP 06 (2002) 025 [hep-th/0204054] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions I: Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [SPIRES].CrossRefMathSciNetGoogle Scholar
  21. [21]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions II: Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [SPIRES].CrossRefMathSciNetGoogle Scholar
  22. [22]
    E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [SPIRES].CrossRefMathSciNetGoogle Scholar
  23. [23]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory I, local solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [SPIRES].CrossRefMathSciNetGoogle Scholar
  24. [24]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory II: global solutions asymptotic to AdS 7 × S 4, JHEP 12 (2008) 044 [arXiv:0810.4647] [SPIRES].CrossRefMathSciNetGoogle Scholar
  25. [25]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory III: existence and rigidity of global solutions asymptotic to AdS 4 × S 7, JHEP 09 (2009) 067 [arXiv:0906.0596] [SPIRES].CrossRefGoogle Scholar
  26. [26]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [SPIRES].CrossRefGoogle Scholar
  27. [27]
    A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22 (2007) 1353 [hep-th/0601089] [SPIRES].ADSGoogle Scholar
  29. [29]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    O. Lunin, 1/2-BPS states in M-theory and defects in the dual CFTs, JHEP 10 (2007) 014 [arXiv:0704.3442] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    A. Van Proeyen, Superconformal algebras, in proceedings of Super Field Theories, Vancouver Canada (1986) pg. 547 [SPIRES].
  33. [33]
    E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity solutions and superalgebras, JHEP 12 (2008) 047 [arXiv:0810.1484] [SPIRES].CrossRefMathSciNetGoogle Scholar
  34. [34]
    M. Chiodaroli, M. Gutperle and D. Krym, Half-BPS solutions locally asymptotic to AdS 3 × S 3 and interface conformal field theories, JHEP 02 (2010) 066 [arXiv:0910.0466] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    J. Kumar and A. Rajaraman, New supergravity solutions for branes in AdS 3 × S 3, Phys. Rev. D 67 (2003) 125005 [hep-th/0212145] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    J. Kumar and A. Rajaraman, Supergravity solutions for AdS 3 × S 3 branes, Phys. Rev. D 69 (2004) 105023 [hep-th/0310056] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    J. Kumar and A. Rajaraman, Revisiting D-branes in AdS 3 × S 3, Phys. Rev. D 70 (2004) 105002 [hep-th/0405024] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP 02 (2007) 068 [hep-th/0701108] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    E. D’Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys. 60 (1988) 917 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    J.D. Fay, Theta functions on Riemann surfaces, Springer-Verlang (1973).Google Scholar
  41. [41]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    J.M. Maldacena, Black holes in string theory, hep-th/9607235 [SPIRES].
  43. [43]
    L.J. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys. B 276 (1986) 71 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    Y. Tanii, N = 8 supergravity in six-dimensions, Phys. Lett. B 145 (1984) 197 [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, Dover U.K.Google Scholar
  46. [46]
    D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [SPIRES].
  47. [47]
    S.R. Das and S.D. Mathur, Interactions involving D-branes, Nucl. Phys. B 482 (1996) 153 [hep-th/9607149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    B.R. Greene, A.D. Shapere, C. Vafa and S.T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. 337 (1990) 1 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  49. [49]
    G.W. Gibbons, M.B. Green and M.J. Perry, Instantons and Seven-Branes in Type IIB superstring theory, Phys. Lett. B 370 (1996) 37 [hep-th/9511080] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Marco Chiodaroli
    • 1
  • Eric D’Hoker
    • 1
  • Michael Gutperle
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations