# A study of Wall-Crossing: flavored kinks in *D* = 2 QED

- 89 Downloads
- 7 Citations

## Abstract

We study spectrum of *D* = 2 \(\mathcal {N} \) = (2, 2) QED with *N* + 1 massive charged chiral multiplets, with care given to precise supermultiplet countings. In the infrared the theory flows to ℂℙ^{ N } model with twisted masses, where we construct generic flavored kink solitons for the large mass regime, and study their quantum degeneracies. These kinks are qualitatively different and far more numerous than those of small mass regime, with features reminiscent of multi-pronged (*p, q*) string web, complete with the wall-crossing behavior. It has been also conjectured that spectrum of this theory is equivalent to the hypermultiplet spectrum of a certain *D* = 4 Seiberg-Witten theory. We find that the correspondence actually extends beyond hypermultiplets in *D* = 4, and that many of the relevant indices match. However, a *D* = 2 BPS state is typically mapped to several different kind of dyons whose individual supermultiplets are rather complicated; the match of index comes about only after summing over indices of these different dyons. We note general wall-crossing behavior of flavored BPS kink states, and compare it to those of *D* = 4 dyons.

## Keywords

Solitons Monopoles and Instantons Supersymmetric gauge theory Brane Dynamics in Gauge Theories Sigma Models## References

- [1]N. Seiberg and E. Witten,
*Monopole condensation, and confinement in N*= 2*supersymmetric Yang-Mills theory*,*Nucl. Phys.***B 426**(1994) 19 [*Erratum ibid.***B 430**(1994) 485] [hep-th/9407087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [2]F. Ferrari and A. Bilal,
*The strong-coupling spectrum of the Seiberg-Witten theory*,*Nucl. Phys.***B 469**(1996) 387 [hep-th/9602082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [3]A. Bilal and F. Ferrari,
*Curves of marginal stability and weak and Strong-Coupling BPS spectra in N*= 2*supersymmetric QCD*,*Nucl. Phys.***B 480**(1996) 589 [hep-th/9605101] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [4]E.J. Weinberg and P. Yi,
*Magnetic monopole dynamics, supersymmetry and duality*,*Phys. Rept.***438**(2007) 65 [hep-th/0609055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [5]A. Mikhailov, N. Nekrasov and S. Sethi,
*Geometric realizations of BPS states in N*= 2*theories*,*Nucl. Phys.***B 531**(1998) 345 [hep-th/9803142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [6]O. Bergman,
*Three-pronged strings and*1/4*BPS states in N*= 4*super-Yang-Mills theory*,*Nucl. Phys.***B 525**(1998) 104 [hep-th/9712211] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [7]K.-M. Lee and P. Yi,
*Dyons in N*= 4*supersymmetric theories and three-pronged strings*,*Phys. Rev.***D 58**(1998) 066005 [hep-th/9804174] [SPIRES].MathSciNetADSGoogle Scholar - [8]D. Bak, C.-k. Lee, K.-M. Lee and P. Yi,
*Low energy dynamics for*1/4*BPS dyons*,*Phys. Rev.***D 61**(2000) 025001 [hep-th/9906119] [SPIRES].MathSciNetADSGoogle Scholar - [9]D. Bak, K.-M. Lee and P. Yi,
*Quantum*1/4*BPS dyons*,*Phys. Rev.***D 61**(2000) 045003 [hep-th/9907090] [SPIRES].MathSciNetADSGoogle Scholar - [10]J.P. Gauntlett, N. Kim, J. Park and P. Yi,
*Monopole dynamics and BPS dyons in N*= 2*super-Yang-Mills theories*,*Phys. Rev.***D 61**(2000) 125012 [hep-th/9912082] [SPIRES].MathSciNetADSGoogle Scholar - [11]A. Ritz, M.A. Shifman, A.I. Vainshtein and M.B. Voloshin,
*Marginal stability and the metamorphosis of BPS states*,*Phys. Rev.***D 63**(2001) 065018 [hep-th/0006028] [SPIRES].MathSciNetADSGoogle Scholar - [12]P.C. Argyres and K. Narayan,
*String webs from field theory*,*JHEP***03**(2001) 047 [hep-th/0101114] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [13]F. Denef,
*Supergravity flows and D-brane stability*,*JHEP***08**(2000) 050 [hep-th/0005049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [14]D. Gaiotto, G.W. Moore and A. Neitzke,
*Four-dimensional wall-crossing via three-dimensional field theory*, arXiv:0807.4723 [SPIRES]. - [15]D. Gaiotto, G.W. Moore and A. Neitzke,
*Wall-crossing, Hitchin Systems and the WKB Approximation*, arXiv:0907.3987 [SPIRES]. - [16]M. Kontsevich and Y. Soibelman,
*Stability structures, motivic Donaldson-Thomas invariants and cluster transformations*, math.AG/0811.2435. - [17]
- [18]T. Dimofte and S. Gukov,
*Refined, motivic and quantum*,*Lett. Math. Phys.***91**(2010) 1 [arXiv:0904.1420] [SPIRES].CrossRefMATHGoogle Scholar - [19]M. Stern and P. Yi,
*Counting Yang-Mills dyons with index theorems*,*Phys. Rev.***D 62**(2000) 125006 [hep-th/0005275] [SPIRES].MathSciNetADSGoogle Scholar - [20]F. Denef,
*Quantum quivers and Hall/hole halos*,*JHEP***10**(2002) 023 [hep-th/0206072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [21]S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa,
*A new supersymmetric index*,*Nucl. Phys.***B 386**(1992) 405 [hep-th/9204102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [22]S. Cecotti and C. Vafa,
*On classification of N*= 2*supersymmetric theories*,*Commun. Math. Phys.***158**(1993) 569 [hep-th/9211097] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar - [23]S. Cecotti and C. Vafa,
*Topological antitopological fusion*,*Nucl. Phys.***B 367**(1991) 359 [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [24]N. Dorey,
*The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms*,*JHEP***11**(1998) 005 [hep-th/9806056] [SPIRES].ADSGoogle Scholar - [25]N. Dorey, T.J. Hollowood and D. Tong,
*The BPS spectra of gauge theories in two and four dimensions*,*JHEP***05**(1999) 006 [hep-th/9902134] [SPIRES].CrossRefADSGoogle Scholar - [26]A. Hanany and K. Hori,
*Branes and N*= 2*theories in two dimensions*,*Nucl. Phys.***B 513**(1998) 119 [hep-th/9707192] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [27]A. Hanany and D. Tong,
*Vortex strings and four-dimensional gauge dynamics*,*JHEP***04**(2004) 066 [hep-th/0403158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [28]M. Shifman and A. Yung,
*Non-Abelian string junctions as confined monopoles*,*Phys. Rev.***D 70**(2004) 045004 [hep-th/0403149] [SPIRES].MathSciNetADSGoogle Scholar - [29]
- [30]M. Shifman and A. Yung,
*Supersymmetric solitons and how they help us understand non-Abelian gauge theories*,*Rev. Mod. Phys.***79**(2007) 1139 [hep-th/0703267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar - [31]D. Tong,
*Quantum vortex strings: a review*,*Annals Phys.***324**(2009) 30 [arXiv:0809.5060] [SPIRES].CrossRefADSMATHGoogle Scholar - [32]M. Shifman, A. Vainshtein and R. Zwicky,
*Central charge anomalies in 2D*σ*-models with twisted mass*,*J. Phys.***A 39**(2006) 13005 [hep-th/0602004] [SPIRES].MathSciNetGoogle Scholar - [33]S. Olmez and M. Shifman,
*Curves of marginal stability in two-dimensional CP(N-1) models with Z*_{N}*-symmetric twisted masses*,*J. Phys.***A 40**(2007) 11151 [hep-th/0703149] [SPIRES].MathSciNetADSGoogle Scholar - [34]D. Tong,
*The moduli space of BPS domain walls*,*Phys. Rev.***D 66**(2002) 025013 [hep-th/0202012] [SPIRES].ADSGoogle Scholar - [35]L. Álvarez-Gaumé and D.Z. Freedman,
*Kähler geometry and the renormalization of supersymmetric*σ*-models*,*Phys. Rev.***D 22**(1980) 846 [SPIRES].ADSGoogle Scholar - [36]J.P. Gauntlett, C.-j. Kim, K.-M. Lee and P. Yi,
*General low energy dynamics of supersymmetric monopoles*,*Phys. Rev.***D 63**(2001) 065020 [hep-th/0008031] [SPIRES].MathSciNetADSGoogle Scholar - [37]
- [38]