A study of Wall-Crossing: flavored kinks in D = 2 QED

  • Sungjay Lee
  • Piljin Yi


We study spectrum of D = 2 \(\mathcal {N} \) = (2, 2) QED with N + 1 massive charged chiral multiplets, with care given to precise supermultiplet countings. In the infrared the theory flows to ℂℙ N model with twisted masses, where we construct generic flavored kink solitons for the large mass regime, and study their quantum degeneracies. These kinks are qualitatively different and far more numerous than those of small mass regime, with features reminiscent of multi-pronged (p, q) string web, complete with the wall-crossing behavior. It has been also conjectured that spectrum of this theory is equivalent to the hypermultiplet spectrum of a certain D = 4 Seiberg-Witten theory. We find that the correspondence actually extends beyond hypermultiplets in D = 4, and that many of the relevant indices match. However, a D = 2 BPS state is typically mapped to several different kind of dyons whose individual supermultiplets are rather complicated; the match of index comes about only after summing over indices of these different dyons. We note general wall-crossing behavior of flavored BPS kink states, and compare it to those of D = 4 dyons.


Solitons Monopoles and Instantons Supersymmetric gauge theory Brane Dynamics in Gauge Theories Sigma Models 


  1. [1]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    F. Ferrari and A. Bilal, The strong-coupling spectrum of the Seiberg-Witten theory, Nucl. Phys. B 469 (1996) 387 [hep-th/9602082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Bilal and F. Ferrari, Curves of marginal stability and weak and Strong-Coupling BPS spectra in N = 2 supersymmetric QCD, Nucl. Phys. B 480 (1996) 589 [hep-th/9605101] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    A. Mikhailov, N. Nekrasov and S. Sethi, Geometric realizations of BPS states in N = 2 theories, Nucl. Phys. B 531 (1998) 345 [hep-th/9803142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    O. Bergman, Three-pronged strings and 1/4 BPS states in N = 4 super-Yang-Mills theory, Nucl. Phys. B 525 (1998) 104 [hep-th/9712211] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    K.-M. Lee and P. Yi, Dyons in N = 4 supersymmetric theories and three-pronged strings, Phys. Rev. D 58 (1998) 066005 [hep-th/9804174] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    D. Bak, C.-k. Lee, K.-M. Lee and P. Yi, Low energy dynamics for 1/4 BPS dyons, Phys. Rev. D 61 (2000) 025001 [hep-th/9906119] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    D. Bak, K.-M. Lee and P. Yi, Quantum 1/4 BPS dyons, Phys. Rev. D 61 (2000) 045003 [hep-th/9907090] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    J.P. Gauntlett, N. Kim, J. Park and P. Yi, Monopole dynamics and BPS dyons in N = 2 super-Yang-Mills theories, Phys. Rev. D 61 (2000) 125012 [hep-th/9912082] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    A. Ritz, M.A. Shifman, A.I. Vainshtein and M.B. Voloshin, Marginal stability and the metamorphosis of BPS states, Phys. Rev. D 63 (2001) 065018 [hep-th/0006028] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    P.C. Argyres and K. Narayan, String webs from field theory, JHEP 03 (2001) 047 [hep-th/0101114] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, arXiv:0807.4723 [SPIRES].
  15. [15]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [SPIRES].
  16. [16]
    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, math.AG/0811.2435.
  17. [17]
    S. Cecotti and C. Vafa, BPS Wall Crossing and topological strings, arXiv:0910.2615 [SPIRES].
  18. [18]
    T. Dimofte and S. Gukov, Refined, motivic and quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [SPIRES].CrossRefMATHGoogle Scholar
  19. [19]
    M. Stern and P. Yi, Counting Yang-Mills dyons with index theorems, Phys. Rev. D 62 (2000) 125006 [hep-th/0005275] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  23. [23]
    S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [SPIRES].ADSGoogle Scholar
  25. [25]
    N. Dorey, T.J. Hollowood and D. Tong, The BPS spectra of gauge theories in two and four dimensions, JHEP 05 (1999) 006 [hep-th/9902134] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    A. Hanany and K. Hori, Branes and N = 2 theories in two dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    D. Tong, TASI lectures on solitons, hep-th/0509216 [SPIRES].
  30. [30]
    M. Shifman and A. Yung, Supersymmetric solitons and how they help us understand non-Abelian gauge theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    D. Tong, Quantum vortex strings: a review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060] [SPIRES].CrossRefADSMATHGoogle Scholar
  32. [32]
    M. Shifman, A. Vainshtein and R. Zwicky, Central charge anomalies in 2D σ-models with twisted mass, J. Phys. A 39 (2006) 13005 [hep-th/0602004] [SPIRES].MathSciNetGoogle Scholar
  33. [33]
    S. Olmez and M. Shifman, Curves of marginal stability in two-dimensional CP(N-1) models with Z N -symmetric twisted masses, J. Phys. A 40 (2007) 11151 [hep-th/0703149] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    D. Tong, The moduli space of BPS domain walls, Phys. Rev. D 66 (2002) 025013 [hep-th/0202012] [SPIRES].ADSGoogle Scholar
  35. [35]
    L. Álvarez-Gaumé and D.Z. Freedman, Kähler geometry and the renormalization of supersymmetric σ-models, Phys. Rev. D 22 (1980) 846 [SPIRES].ADSGoogle Scholar
  36. [36]
    J.P. Gauntlett, C.-j. Kim, K.-M. Lee and P. Yi, General low energy dynamics of supersymmetric monopoles, Phys. Rev. D 63 (2001) 065020 [hep-th/0008031] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, hep-th/0702146 [SPIRES].
  38. [38]
    D. Gaiotto, Surface operators in N = 2 4D gauge theories, arXiv:0911.1316 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations