Flavor conversion of cosmic neutrinos from hidden jets

  • Soebur Razzaque
  • A. Yu. Smirnov


High energy cosmic neutrino fluxes can be produced inside relativistic jets under the envelopes of collapsing stars. In the energy range E ∼ (0.3 − 105)GeV, flavor conversion of these neutrinos is modified by various matter effects inside the star and the Earth. We present a comprehensive (both analytic and numerical) description of the flavor conversion of these neutrinos which includes:
  1. (i)

    oscillations inside jets,

  2. (ii)

    flavor-to-mass state transitions in an envelope,

  3. (iii)

    loss of coherence on the way to observer, and

  4. (iv)

    oscillations of the mass states inside the Earth.


We show that conversion has several new features which are not realized in other objects, in particular interference effects (“L- and H- wiggles”) induced by the adiabaticity violation. The ν − ν scattering inside jet and inelastic neutrino interactions in the envelope may produce some additional features at E ≳ 104 GeV.We study dependence of the probabilities and flavor ratios in the matter-affected region on angles θ 13 and θ 23, on the CP-phase δ, as well as on the initial flavor content and density profile of the star. We show that measurements of the energy dependence of the flavor ratios will, in principle, allow to determine independently the neutrino and astrophysical parameters.


Neutrino Physics Electromagnetic Processes and Properties 


  1. [1]
    F. Halzen, IceCube: the rationale for kilometer-scale neutrino detectors, arXiv:0910.0436 [SPIRES].
  2. [2]
    V. Berezinsky, UHE neutrino astronomy and neutrino oscillations, in Proceedings of the 4th International Workshop “Neutrino Oscillations in Venice”, Milla Baldo Ceolin ed., pg. 137 [arXiv:0901.1428] [SPIRES].
  3. [3]
    E. Waxman, Neutrino astrophysics: a new tool for exploring the universe, Science 315 (2007) 63 [astro-ph/0701168] [SPIRES]. CrossRefADSGoogle Scholar
  4. [4]
    F.W. Stecker, C. Done, M.H. Salamon and P. Sommers, High-energy neutrinos from active galactic nuclei, Phys. Rev. Lett. 66 (1991) 2697 [Erratum ibid. 69 (1992) 2738] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    L. Nellen, K. Mannheim and P.L. Biermann, Neutrino production through hadronic cascades in AGN accretion disks, Phys. Rev. D 47 (1993) 5270 [hep-ph/9211257] [SPIRES].ADSGoogle Scholar
  6. [6]
    A.P. Szabo and R.J. Protheroe, Implications of particle acceleration in active galactic nuclei for cosmic rays and high-energy neutrino astronomy, Astropart. Phys. 2 (1994) 375 [astro-ph/9405020] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    A. Atoyan and C.D. Dermer, High-energy neutrinos from photomeson processes in blazars, Phys. Rev. Lett. 87 (2001) 221102 [astro-ph/0108053] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    J. Alvarez-Muniz and P. Mészáros, High energy neutrinos from radio-quiet AGNs, Phys. Rev. D 70 (2004) 123001 [astro-ph/0409034] [SPIRES].ADSGoogle Scholar
  9. [9]
    E. Waxman and J.N. Bahcall, High energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A. Atoyan and C.D. Dermer, High energy neutrinos from gamma-ray bursts, Phys. Rev. Lett. 91 (2003) 071102 [astro-ph/0301030] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Razzaque, P. Mészáros and E. Waxman, Neutrino signatures of the supernova-gamma ray burst relationship, Phys. Rev. D 69 (2004) 023001 [astro-ph/0308239] [SPIRES].ADSGoogle Scholar
  12. [12]
    K. Murase, K. Ioka, S. Nagataki and T. Nakamura, High energy neutrinos and cosmic-rays from low-luminosity gamma-ray bursts?, Astrophys. J. 651 (2006) L5 [astro-ph/0607104] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    N. Gupta and B. Zhang, Neutrino spectra from low and high luminosity populations of gamma ray bursts, Astropart. Phys. 27 (2007) 386 [astro-ph/0606744] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    E. Waxman and A. Loeb, TeV neutrinos and GeV photons from shock breakout in supernovae, Phys. Rev. Lett. 87 (2001) 071101 [astro-ph/0102317] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    X.-Y. Wang, S. Razzaque, P. Mészáros and Z.-G. Dai, High-energy cosmic rays and neutrinos from semi- relativistic hypernovae, Phys. Rev. D 76 (2007) 083009 [arXiv:0705.0027] [SPIRES].ADSGoogle Scholar
  16. [16]
    J. Alvarez-Muniz and F. Halzen, High-energy neutrinos from the cosmic accelerator RX J1713.7 − 3946, Astrophys. J. 576 (2002) L33 [astro-ph/0205408] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M.L. Costantini and F. Vissani, Expected neutrino signal from supernova remnant RX J1713.7 − 3946 and flavor oscillations, Astropart. Phys. 23 (2005) 477 [astro-ph/0411761] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    S. Razzaque, P. Mészáros and E. Waxman, TeV neutrinos from core collapse supernovae and hypernovae, Phys. Rev. Lett. 93 (2004) 181101 [Erratum ibid. 94 (2005) 109903] [astro-ph/0407064] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    D.C. Leonard, A.V. Filippenko, A.J. Barth and T. Matheson, Evidence for asphericity in the type IIn supernova 1998S, Astrophys. J. 536 (2000) 239 [astro-ph/9908040] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    L. Wang, D.A. Howell, P. Hoflich and J.C. Wheeler, Bipolar supernova explosions, Astrophys. J. 550 (2001) 1030.CrossRefADSGoogle Scholar
  21. [21]
    J. Granot and E. Ramirez-Ruiz, The case for a misaligned relativistic jet from SN 2001em, Astrophys. J. 609 (2004) L9 [astro-ph/0403421] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S. Ando and J.F. Beacom, Revealing the supernova-gamma-ray burst connection with TeV neutrinos, Phys. Rev. Lett. 95 (2005) 061103 [astro-ph/0502521] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Razzaque, P. Mészáros and E. Waxman, High energy neutrinos from a slow jet model of core collapse supernovae, Mod. Phys. Lett. A 20 (2005) 2351 [astro-ph/0509729] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Ando, J.F. Beacom and H. Yuksel, Detection of neutrinos from supernovae in nearby galaxies, Phys. Rev. Lett. 95 (2005) 171101 [astro-ph/0503321] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    Fermi LAT collaboration, A.A. Abdo et al., Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the Large Area Telescope on Fermi, arXiv:0911.5327 [SPIRES].
  26. [26]
    IceCube collaboration, J. Ahrens et al., Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos, Astropart. Phys. 20 (2004) 507 [astro-ph/0305196] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    ANTARES collaboration, J.A. Aguilar et al., First results of the instrumentation line for the deep-sea ANTARES neutrino telescope, Astropart. Phys. 26 (2006) 314 [astro-ph/0606229] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    U.F. Katz, KM3NeT : towards a KM 3 mediterranean neutrino telescope, Presented at 2nd VLVNT Workshop on Very Large Neutrino Telescope (V LV NT 2), Catania Italy November 8–11 2005 [Nucl. Instrum. Meth. A 567 (2006) 457] [astro-ph/0606068] [SPIRES].
  29. [29]
    M. Kowalski and A. Mohr, Detecting neutrino-transients with optical follow-up observations, Astropart. Phys. 27 (2007) 533 [astro-ph/0701618] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    O. Mena, I. Mocioiu and S. Razzaque, Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources, Phys. Rev. D 75 (2007) 063003 [astro-ph/0612325] [SPIRES].ADSGoogle Scholar
  31. [31]
    C. Lunardini and A.Y. Smirnov, The minimum width condition for neutrino conversion in matter, Nucl. Phys. B 583 (2000) 260 [hep-ph/0002152] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    Y. Farzan and A.Y. Smirnov, Coherence and oscillations of cosmic neutrinos, Nucl. Phys. B 805 (2008) 356 [arXiv:0803.0495] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].ADSGoogle Scholar
  34. [34]
    L. Wolfenstein, Effects of matter on neutrino oscillations, in Neutrino-78, Purdue University C3, U.S.A. (1978) [SPIRES].Google Scholar
  35. [35]
    S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [SPIRES].Google Scholar
  36. [36]
    S.P. Mikheev and A.Y. Smirnov, Neutrino oscillations in a variable-density medium and ν-bursts due to the gravitational collapse of stars, Sov. Phys. JETP 64 (1986) 4 [Zh. Eksp. Teor. Fiz. 91 (1986) 7] [arXiv:0706.0454] [SPIRES].Google Scholar
  37. [37]
    A. MacFadyen and S.E. Woosley, Collapsars — gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J. 524 (1999) 262 [astro-ph/9810274] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    Fermi LAT and Fermi GBM collaborations, A.A. Abdo et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323 (2009) 1688 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    Fermi/GBM collaboration, A.A. Abdo et al., Fermi observations of GRB 090902B: a distinct spectral component in the prompt and delayed emission, Astrophys. J. 706 (2009) L138 [arXiv:0909.2470] [SPIRES].CrossRefGoogle Scholar
  40. [40]
    A.I. MacFadyen, S.E. Woosley and A. Heger, Supernovae, jets and collapsars, Astrophys. J. 550 (2001) 410 [astro-ph/9910034] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    T. Piran, The physics of gamma-ray bursts, Rev. Mod. Phys. 76 (2004) 1143 [astro-ph/0405503] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    P. Mészáros, Gamma-ray bursts, Rept. Prog. Phys. 69 (2006) 2259.CrossRefGoogle Scholar
  43. [43]
    T.K. Gaisser, Cosmic rays and particle physics, Cambridge University Press, Cambridge U.K. (1990).Google Scholar
  44. [44]
    R. Enberg, M.H. Reno and I. Sarcevic, High energy neutrinos from charm in astrophysicalsources, Phys. Rev. D 79 (2009) 053006 [arXiv:0808.2807] [SPIRES].ADSGoogle Scholar
  45. [45]
    P. Lipari, Lepton spectra in the earth’s atmosphere, Astropart. Phys. 1 (1993) 195 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    H.B.J. Koers and R.A.M.J. Wijers, Enhanced high-energy neutrino emission from choked gamma-ray bursts due to meson and muon acceleration, arXiv:0711.4791 [SPIRES].
  47. [47]
    C.D. Matzner and C.F. McKee, The expulsion of stellar envelopes in core-collapse supernovae, Astrophys. J. 510 (1999) 379 [astro-ph/9807046] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [SPIRES].Google Scholar
  49. [49]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].CrossRefADSMATHGoogle Scholar
  50. [50]
    E.K. Akhmedov, Matter effects in short-baseline neutrino oscillations, Phys. Lett. B 503 (2001) 133 [hep-ph/0011136] [SPIRES].ADSGoogle Scholar
  51. [51]
    A.S. Dighe and A.Y. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova, Phys. Rev. D 62 (2000) 033007 [hep-ph/9907423] [SPIRES].ADSGoogle Scholar
  52. [52]
    S.T. Petcov, Exact analytic description of two neutrino oscillations in matter with exponentially varying density, Phys. Lett. B 200 (1988) 373 [SPIRES].ADSGoogle Scholar
  53. [53]
    J.G. Learned and S. Pakvasa, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys. 3 (1995) 267 [hep-ph/9405296] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    E. Bugaev, T. Montaruli, Y. Shlepin and I. Sokalski, Propagation of τ neutrinos and τ leptons through the earth and their detection in underwater/ice neutrino telescopes, Astropart. Phys. 21 (2004) 491 [hep-ph/0312295] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    T. DeYoung, S. Razzaque and D.F. Cowen, Astrophysical τ neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay, Astropart. Phys. 27 (2007) 238 [astro-ph/0608486] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Space Science DivisionU.S. Naval Research LaboratoryWashingtonU.S.A.
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Institute for Nuclear Research of Russian Academy of SciencesMoscowRussia

Personalised recommendations