Advertisement

General aspects of tree level gauge mediation

  • Marco Nardecchia
  • Andrea Romanino
  • Robert Ziegler
Article

Abstract

Tree level gauge mediation (TGM) may be considered as the simplest way to communicate supersymmetry breaking: through the tree level renormalizable exchange of heavy gauge messengers. We study its general structure, in particular the general form of tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us to set up general guidelines for model building and to identify the hypotheses underlying the phenomenological predictions. In the context of models based on the “minimal” gauge group SO(10), we show that only two “pure” embeddings of the MSSM fields are possible using d < 120 representations, each of them leading to specific predictions for the ratios of family universal sfermion masses at the GUT scale, m 5 2 = 2m 10 2 or m 5 2 = (3/4)m 10 2 (in SU(5) notation). These ratios are determined by group factors and are peculiar enough to make this scheme testable at the LHC. We also discuss three possible approaches to the μ-problem, one of them distinctive of TGM.

Keywords

Supersymmetry Breaking Supersymmetric Effective Theories 

References

  1. [1]
    H.P. Nilles, Dynamically broken supergravity and the hierarchy problem, Phys. Lett. B 115 (1982) 193 [SPIRES].ADSGoogle Scholar
  2. [2]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].ADSGoogle Scholar
  4. [4]
    L.E. Ibáñez, Locally supersymmetric SU(5) grand unification, Phys. Lett. B 118 (1982) 73 [SPIRES].ADSGoogle Scholar
  5. [5]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].ADSGoogle Scholar
  6. [6]
    N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    M. Dine and W. Fischler, A phenomenological model of particle physics based on supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].ADSGoogle Scholar
  11. [11]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [SPIRES].ADSGoogle Scholar
  14. [14]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    M. Nardecchia, A. Romanino and R. Ziegler, Tree level gauge mediation, JHEP 11 (2009) 112 [arXiv:0909.3058] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    S. Ferrara, L. Girardello and F. Palumbo, A general mass formula in broken supersymmetry, Phys. Rev. D 20 (1979) 403 [SPIRES].ADSGoogle Scholar
  17. [17]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    S. Weinberg, The quantum theory of fields. Volume 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2000) [SPIRES].Google Scholar
  19. [19]
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Weinberg, Supersymmetry at ordinary energies. 1. Masses and conservation laws, Phys. Rev. D 26 (1982) 287 [SPIRES].ADSGoogle Scholar
  21. [21]
    G.R. Farrar and S. Weinberg, Supersymmetry at ordinary energies. 2. R invariance, Goldstone bosons, and gauge fermion masses, Phys. Rev. D 27 (1983) 2732 [SPIRES].ADSGoogle Scholar
  22. [22]
    R. Barbieri, S. Ferrara and D.V. Nanopoulos, From high-energy supersymmetry breaking to low-energy physics through decoupling, Phys. Lett. B 116 (1982) 16 [SPIRES].ADSGoogle Scholar
  23. [23]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992) [SPIRES].Google Scholar
  24. [24]
    N. Seiberg, T. Volansky and B. Wecht, Semi-direct gauge mediation, JHEP 11 (2008) 004 [arXiv:0809.4437] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications, Nucl. Phys. B 256 (1985) 557 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    A. Pomarol and S. Dimopoulos, Superfield derivation of the low-energy effective theory of softly broken supersymmetry, Nucl. Phys. B 453 (1995) 83 [hep-ph/9505302] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    R. Rattazzi, A note on the effective soft SUSY breaking Lagrangian below the GUT scale, Phys. Lett. B 375 (1996) 181 [hep-ph/9507315] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    N. Arkani-Hamed, M. Dine and S.P. Martin, Dynamical supersymmetry breaking in models with a Green-Schwarz mechanism, Phys. Lett. B 431 (1998) 329 [hep-ph/9803432] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    L. Brizi, M. Gomez-Reino and C.A. Scrucca, Globally and locally supersymmetric effective theories for light fields, Nucl. Phys. B 820 (2009) 193 [arXiv:0904.0370] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. (Proc. Suppl.) 45BC (1996) 1 [hep-th/9509066] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetry breaking, Class. Quant. Grav. 24 (2007) S741 [hep-ph/0702069] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  32. [32]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].ADSGoogle Scholar
  33. [33]
    D.A. Demir, L.L. Everett and P. Langacker, Dirac neutrino masses from generalized supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 091804 [arXiv:0712.1341] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J. Hisano, H. Murayama and T. Goto, Threshold correction on gaugino masses at grand unification scale, Phys. Rev. D 49 (1994) 1446 [SPIRES].ADSGoogle Scholar
  37. [37]
    I.L. Buchbinder, S. Kuzenko and Z. Yarevskaya, Supersymmetric effective potential: superfield approach, Nucl. Phys. B 411 (1994) 665 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    B. de Wit, M.T. Grisaru and M. Roček, Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action, Phys. Lett. B 374 (1996) 297 [hep-th/9601115] [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Pickering and P.C. West, The one loop effective super-potential and non-holomorphicity, Phys. Lett. B 383 (1996) 54 [hep-th/9604147] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996) 415 [hep-th/9605149] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Brignole, One-loop Kähler potential in non-renormalizable theories, Nucl. Phys. B 579 (2000) 101 [hep-th/0001121] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    J. Polchinski and L. Susskind, Breaking of supersymmetry at intermediate-energy, Phys. Rev. D 26 (1982) 3661 [SPIRES].ADSGoogle Scholar
  43. [43]
    S. Dimopoulos and G.F. Giudice, Multi-messenger theories of gauge-mediated supersymmetry breaking, Phys. Lett. B 393 (1997) 72 [hep-ph/9609344] [SPIRES].ADSGoogle Scholar
  44. [44]
    G.R. Dvali, G.F. Giudice and A. Pomarol, The μ-problem in theories with gauge-mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    M. Frigerio, P. Hosteins, S. Lavignac and A. Romanino, A new, direct link between the baryon asymmetry and neutrino masses, Nucl. Phys. B 806 (2009) 84 [arXiv:0804.0801] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    L. Calibbi, M. Frigerio, S. Lavignac and A. Romanino, Flavour violation in supersymmetric SO(10) unification with a type-II seesaw mechanism, JHEP 12 (2009) 057 [arXiv:0910.0377] [SPIRES].CrossRefGoogle Scholar
  48. [48]
    L. Girardello and M.T. Grisaru, Soft breaking of supersymmetry, Nucl. Phys. B 194 (1982) 65 [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, arXiv:0910.1785 [SPIRES].
  51. [51]
    M. Maniatis, The NMSSM reviewed, arXiv:0906.0777 [SPIRES].
  52. [52]
    P. Langacker, N. Polonsky and J. Wang, A low-energy solution to the mu-problem in gauge mediation, Phys. Rev. D 60 (1999) 115005 [hep-ph/9905252] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. de Gouvêa, A. Friedland and H. Murayama, Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking, Phys. Rev. D 57 (1998) 5676 [hep-ph/9711264] [SPIRES].ADSGoogle Scholar
  54. [54]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [SPIRES].ADSGoogle Scholar
  55. [55]
    M. Srednicki, Supersymmetric grand unified theories and the early universe, Nucl. Phys. B 202 (1982) 327 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Marco Nardecchia
    • 1
  • Andrea Romanino
    • 1
  • Robert Ziegler
    • 1
  1. 1.SISSA/ISAS and INFNTriesteItaly

Personalised recommendations