Skip to main content
Log in

Holographic fermions on a charged Lifshitz background from Einstein-Dilaton-Maxwell model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the properties of the fermionic response on a charged Lifshitz background from Einstein-Dilaton-Maxwell model. First, we find that the Lifshitz dynamical exponent z plays the role smoothing out the quasi-particle-peak. Second, by numerical methods, we study the Fermi surface structure and the dispersion relation on this background for a specific example of q = 0.5 and z = 1.02. One finds that the dispersion relation is non-linear, which indicates such a holographic system can be the candidates for holographic dual of generalized non-Fermi liquids. Third, by studying the dependence of the Fermi momentum k F on z, one observes that the Fermi momentum k F decreases with z increasing and when z > z crit , the quasi-particle-like peak enters into the oscillatory region. Finally, by matching methods, we can also determined analytically the dispersion relation after the Fermi momentum is numerically worked out. One finds that the scaling exponent δ increases rapidly with z increasing, indicating that the degree of deviate from the Landau Fermi liquid becomes larger with z increasing. But the another scaling exponent β = 1, which is independent of z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [INSPIRE].

    ADS  Google Scholar 

  5. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  10. D.-W. Pang, A note on black holes in asymptotically Lifshitz spacetime, arXiv:0905.2678 [INSPIRE].

  11. D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz black hole in four dimensional R 2 gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, Eur. Phys. J. C 70 (2010) 335 [arXiv:0910.4428] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].

    ADS  Google Scholar 

  17. V. Keranen and L. Thorlacius, Thermal correlators in holographic models with Lifshitz scaling, Class. Quant. Grav. 29 (2012) 194009 [arXiv:1204.0360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  20. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  21. M. Čubrović, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  23. J.P. Wu, Holographic fermions in charged Gauss-Bonnet black hole, JHEP 07 (2011) 106 [arXiv:1103.3982] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.P. Wu, Some properties of the holographic fermions in an extremal charged dilatonic black hole, Phys. Rev. D 84 (2011) 064008 [arXiv:1108.6134] [INSPIRE].

    ADS  Google Scholar 

  25. W.J. Li and J.P. Wu, Holographic fermions in charged dilaton black branes, Nucl. Phys. B 867 (2013) 810 [arXiv:1203.0674] [INSPIRE].

    Article  ADS  Google Scholar 

  26. N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].

    ADS  Google Scholar 

  28. W.J. Li and H. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  29. W.J. Li, R. Meyer and H. Zhang, Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole, JHEP 01 (2012) 153 [arXiv:1111.3783] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical gap and cuprate-like physics from holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [INSPIRE].

    ADS  Google Scholar 

  32. J.P. Wu and H.B. Zeng, Dynamic gap from holographic fermions in charged dilaton black branes, JHEP 04 (2012) 068 [arXiv:1201.2485] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W.Y. Wen and S.Y. Wu, Dipole coupling effect of holographic fermion in charged dilatonic gravity, Phys. Lett. B 712 (2012) 266 [arXiv:1202.6539] [INSPIRE].

    ADS  Google Scholar 

  34. X.M. Kuang, B. Wang and J.P. Wu, Dipole coupling effect of holographic fermion in the background of charged Gauss-Bonnet AdS black hole, JHEP 07 (2012) 125 [arXiv:1205.6674] [INSPIRE].

    Article  ADS  Google Scholar 

  35. X.M. Kuang, B. Wang and J.P. Wu, Dynamical gap from holography in the charged dilaton black hole, arXiv:1210.5735 [INSPIRE].

  36. U. Gürsoy, E. Plauschinn, H. Stoof and S. Vandoren, Holography and ARPES sum-rules, JHEP 05 (2012) 018 [arXiv:1112.5074] [INSPIRE].

    Article  Google Scholar 

  37. M. Alishahiha, M.R. Mohammadi Mozaffar and A. Mollabashi, Fermions on Lifshitz background, Phys. Rev. D 86 (2012) 026002 [arXiv:1201.1764] [INSPIRE].

    ADS  Google Scholar 

  38. L.Q. Fang, X.H. Ge and X.M. Kuang, Holographic fermions in charged Lifshitz theory, Phys. Rev. D 86 (2012) 105037 [arXiv:1201.3832] [INSPIRE].

    ADS  Google Scholar 

  39. J.N. Laia and D. Tong, A holographic flat band, JHEP 11 (2011) 125 [arXiv:1108.1381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M.R.M. Mozaffar and A. Mollabashi, Holographic quantum critical points in Lifshitz space-time, arXiv:1212.6635 [INSPIRE].

  41. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. W. Mueck and K. Viswanathan, Conformal field theory correlators from classical field theory on Anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].

    ADS  Google Scholar 

  44. T. Senthil, Critical Fermi surfaces and non-Fermi liquid metals, Phys. Rev. B 78 (2008) 035103 [arXiv:0803.4009].

    ADS  Google Scholar 

  45. T. Senthil, Theory of a continuous Mott transition in two dimensions, Phys. Rev. B 78 (2008) 045109 [arXiv:0804.1555].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Pin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JP. Holographic fermions on a charged Lifshitz background from Einstein-Dilaton-Maxwell model. J. High Energ. Phys. 2013, 83 (2013). https://doi.org/10.1007/JHEP03(2013)083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)083

Keywords

Navigation