Skip to main content
Log in

Variant vector-tensor multiplets in supergravity: classification and component reduction

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recent paper arXiv:1205.6881 has developed superform formulations for two versions of the vector-tensor multiplet and their Chern-Simons couplings in fourdimensional \(\mathcal{N}=2\) conformal supergravity. One of them is the standard vector-tensor multiplet with the central charge gauged by a vector multiplet. The other is the variant vector-tensor multiplet with the property that its own one-form gauges the central charge. Here a more general setup is presented in which the known versions reside as special cases. Analysis of the setup demonstrates that under certain assumptions there are two distinct variants, corresponding to the two formulations in arXiv:1205.6881. This provides a classification scheme for vector-tensor multiplets.

We then show that our superspace description leads to an efficient means of deriving component actions in supergravity. The entire action including all fermionic terms is derived for the non-linear vector-tensor multiplet. This extends the results of de Wit et al. in hep-th/9710212, where only the bosonic sector appeared. Finally, the bosonic sector of the action for the variant vector-tensor multiplet is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fayet, Fermi-Bose Hypersymmetry, Nucl. Phys. B 113 (1976) 135 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Sohnius, Supersymmetry and Central Charges, Nucl. Phys. B 138 (1978) 109 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Sohnius, K. Stelle and P.C. West, Off-mass shell formulation of extended supersymmetric gauge theories, Phys. Lett. B 92 (1980) 123 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Sohnius, K. Stelle and P.C. West, Dimensional reduction by legendre transformation generates off-shell supersymmetric Yang-Mills theories, Nucl. Phys. B 173 (1980) 127 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in Superspace and Supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press, Cambridge, U.K. (1981), pg. 283.

    Google Scholar 

  6. B. de Wit, V. Kaplunovsky, J. Louis and D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua, Nucl. Phys. B 451 (1995) 53 [hep-th/9504006] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Milewski, Superfield formulation of the N = 2 super Yang-Mills model with central charge, Phys. Lett. B 112 (1982) 148 [INSPIRE].

    Article  ADS  Google Scholar 

  8. B. Milewski, N = 1 superspace formulation of N = 2 and N = 4 super Yang-Mills models with central charge, Nucl. Phys. B 217 (1983) 172 [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Claus, B. de Wit, M. Faux, B. Kleijn, R. Siebelink and P. Termonia, The Vector-tensor supermultiplet with gauged central charge, Phys. Lett. B 373 (1996) 81 [hep-th/9512143] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Claus, P. Termonia, B. de Wit and M. Faux, Chern-Simons couplings and inequivalent vector-tensor multiplets, Nucl. Phys. B 491 (1997) 201 [hep-th/9612203] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Claus, B. de Wit, M. Faux, B. Kleijn, R. Siebelink and P. Termonia, N = 2 supergravity Lagrangians with vector-tensor multiplets, Nucl. Phys. B 512 (1998) 148 [hep-th/9710212] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Hindawi, B.A. Ovrut and D. Waldram, Vector-tensor multiplet in N = 2 superspace with central charge, Phys. Lett. B 392 (1997) 85 [hep-th/9609016] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Grimm, M. Hasler and C. Herrmann, The N = 2 vector-tensor multiplet, central charge superspace and Chern-Simons couplings, Int. J. Mod. Phys. A 13 (1998) 1805 [hep-th/9706108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Buchbinder, A. Hindawi and B.A. Ovrut, A Two form formulation of the vector-tensor multiplet in central charge superspace, Phys. Lett. B 413 (1997) 79 [hep-th/9706216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Dragon, S.M. Kuzenko and U. Theis, The Vector-tensor multiplet in harmonic superspace, Eur. Phys. J. C 4 (1998) 717 [hep-th/9706169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Dragon and S.M. Kuzenko, Selfinteracting vector-tensor multiplet, Phys. Lett. B 420 (1998) 64 [hep-th/9709088] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Ivanov and E. Sokatchev, On nonlinear superfield versions of the vector tensor multiplet, Phys. Lett. B 429 (1998) 35 [hep-th/9711038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Dragon, E. Ivanov, S. Kuzenko, E. Sokatchev and U. Theis, N = 2 rigid supersymmetry with gauged central charge, Nucl. Phys. B 538 (1999) 411 [hep-th/9805152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.M. Kuzenko and J. Novak, Vector-tensor supermultiplets in AdS and supergravity, JHEP 01 (2012) 106 [arXiv:1110.0971] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Butter and J. Novak, Component reduction in N = 2 supergravity: the vector, tensor and vector-tensor multiplets, JHEP 05 (2012) 115 [arXiv:1201.5431] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Novak, Superform formulation for vector-tensor multiplets in conformal supergravity, JHEP 09 (2012) 060 [arXiv:1205.6881] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. Andrianopoli, R. D’Auria and L. Sommovigo, D = 4, N = 2 supergravity in the presence of vector-tensor multiplets and the role of higher p-forms in the framework of free differential algebras, Adv. Stud. Theor. Phys. 1 (2008) 561 [arXiv:0710.3107] [INSPIRE].

    MathSciNet  Google Scholar 

  23. L. Andrianopoli, R. D’Auria, L. Sommovigo and M. Trigiante, D = 4, N = 2 Gauged Supergravity coupled to Vector-Tensor Multiplets, Nucl. Phys. B 851 (2011) 1 [arXiv:1103.4813] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 Supergravity and Projective Superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. U. Theis, New N = 2 supersymmetric vector tensor interaction, Phys. Lett. B 486 (2000) 443 [hep-th/0005044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. U. Theis, Nonlinear vector tensor multiplets revisited, Nucl. Phys. B 602 (2001) 367 [hep-th/0012096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP 09 (2012) 131 [arXiv:1205.6981] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Breitenlohner and M.F. Sohnius, Superfields, auxiliary fields, and tensor calculus for N = 2 extended supergravity, Nucl. Phys. B 165 (1980) 483[INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. B. de Wit, J. van Holten and A. Van Proeyen, Central charges and conformal supergravity, Phys. Lett. B 95 (1980) 51 [INSPIRE].

    Article  ADS  Google Scholar 

  32. S.M. Kuzenko and S. Theisen, Correlation functions of conserved currents in N = 2 superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge, U.K. (2001).

    Book  MATH  Google Scholar 

  34. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S.J. Gates Jr., Ectoplasm has no topology: the Prelude, hep-th/9709104 [INSPIRE].

  36. S.J. Gates Jr., Ectoplasm has no topology, Nucl. Phys. B 541 (1999) 615 [hep-th/9809056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. S.J. Gates Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Voronov, Geometric integration theory on supermanifolds, Sov. Sci. Rev. C 9 (1992) 1.

    Google Scholar 

  39. M.F. Hasler, The Three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Akemann, R. Grimm, M. Hasler and C. Herrmann, N = 2 central charge superspace and a minimal supergravity multiplet, Class. Quant. Grav. 16 (1999) 1617 [hep-th/9812026] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. R. Grimm, M. Sohnius and J. Wess, Extended Supersymmetry and Gauge Theories, Nucl. Phys. B 133 (1978) 275 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. B. de Wit, J. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  43. E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].

    Article  ADS  Google Scholar 

  45. B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  46. B. de Wit, R. Philippe and A. Van Proeyen, The improved tensor multiplet in N = 2 supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].

    Article  ADS  Google Scholar 

  47. I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol, U.K. (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Novak.

Additional information

ArXiv ePrint: 1210.8325

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, J. Variant vector-tensor multiplets in supergravity: classification and component reduction. J. High Energ. Phys. 2013, 53 (2013). https://doi.org/10.1007/JHEP03(2013)053

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)053

Keywords

Navigation