Skip to main content
Log in

Lorentz violating kinematics: threshold theorems

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent tentative experimental indications, and the subsequent theoretical speculations, regarding possible violations of Lorentz invariance have attracted a vast amount of attention. An important technical issue that considerably complicates detailed calculations in any such scenario, is that once one violates Lorentz invariance the analysis of thresholds in both scattering and decay processes becomes extremely subtle, with many new and naively unexpected effects. In the current article we develop several extremely general threshold theorems that depend only on the existence of some energy momentum relation E(p), eschewing even assumptions of isotropy or monotonicity. We shall argue that there are physically interesting situations where such a level of generality is called for, and that existing (partial) results in the literature make unnecessary technical assumptions. Even in this most general of settings, we show that at threshold all final state particles move with the same 3-velocity, while initial state particles must have 3-velocities parallel/anti-parallel to the final state particles. In contrast the various 3-momenta can behave in a complicatedand counter-intuitive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].

  2. MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].

    ADS  Google Scholar 

  3. G. Amelino-Camelia et al., OPERA-reassessing data on the energy dependence of the speed of neutrinos, Int. J. Mod. Phys. D 20 (2011) 2623 [arXiv:1109.5172] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. G.F. Giudice, S. Sibiryakov and A. Strumia, Interpreting OPERA results on superluminal neutrino, Nucl. Phys. B in press, arXiv:1109.5682 [INSPIRE].

  5. A.G. Cohen and S.L. Glashow, Pair Creation Constrains Superluminal Neutrino Propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Dvali and A. Vikman, Price for Environmental Neutrino-Superluminality, JHEP 02 (2012)134 [arXiv:1109.5685] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Alexandre, J. Ellis and N.E. Mavromatos, On the Possibility of Superluminal Neutrino Propagation, Phys. Lett. B 706 (2012) 456 [arXiv:1109.6296] [INSPIRE].

    ADS  Google Scholar 

  8. G. Cacciapaglia, A. Deandrea and L. Panizzi, Superluminal neutrinos in long baseline experiments and SN1987a, JHEP 11 (2011) 137 [arXiv:1109.4980] [INSPIRE].

    Article  ADS  Google Scholar 

  9. X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, Phys. Rev. Lett. 107 (2011) 241802 [arXiv:1109.6667] [INSPIRE].

    Article  ADS  Google Scholar 

  10. F. Klinkhamer, Superluminal muon-neutrino velocity from a Fermi-point-splitting model of Lorentz violation, arXiv:1109.5671 [INSPIRE].

  11. S.S. Gubser, Superluminal neutrinos and extra dimensions: Constraints from the null energy condition, Phys. Lett. B 705 (2011) 279 [arXiv:1109.5687] [INSPIRE].

    ADS  Google Scholar 

  12. A. Kehagias, Relativistic Superluminal Neutrinos, arXiv:1109.6312 [INSPIRE].

  13. P. Wang, H. Wu and H. Yang, Superluminal neutrinos and domain walls, arXiv:1109.6930 [INSPIRE].

  14. E.N. Saridakis, Superluminal neutrinos in Hořava-Lifshitz gravity, arXiv:1110.0697 [INSPIRE].

  15. W. Winter, Constraints on the interpretation of the superluminal motion of neutrinos at OPERA, Phys. Rev. D 85 (2012) 017301 [arXiv:1110.0424] [INSPIRE].

    ADS  Google Scholar 

  16. J. Alexandre, Lifshitz-type Quantum Field Theories in Particle Physics, Int. J. Mod. Phys. A 26 (2011) 4523 [arXiv:1109.5629] [INSPIRE].

    ADS  Google Scholar 

  17. F. Klinkhamer and G. Volovik, Superluminal neutrino and spontaneous breaking of Lorentz invariance, Pisma Zh. Eksp. Teor. Fiz. 94 (2011) 731 [arXiv:1109.6624] [INSPIRE].

    Google Scholar 

  18. R. Cowsik, S. Nussinov and U. Sarkar, Superluminal Neutrinos at OPERA Confront Pion Decay Kinematics, Phys. Rev. Lett. 107 (2011) 251801 [arXiv:1110.0241] [INSPIRE].

    Article  ADS  Google Scholar 

  19. L. Maccione, S. Liberati and D.M. Mattingly, Violations of Lorentz invariance in the neutrino sector after OPERA, arXiv:1110.0783 [INSPIRE].

  20. N. Dass, OPERA, SN1987a and energy dependence of superluminal neutrino velocity, arXiv:1110.0351 [INSPIRE].

  21. J. Carmona and J. Cortes, Constraints from Neutrino Decay on Superluminal Velocities, arXiv:1110.0430 [INSPIRE].

  22. S.R. Coleman and S.L. Glashow, Cosmic ray and neutrino tests of special relativity, Phys. Lett. B 405 (1997) 249 [hep-ph/9703240] [INSPIRE].

    ADS  Google Scholar 

  23. S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999)116008 [hep-ph/9812418] [INSPIRE].

    ADS  Google Scholar 

  24. S. Liberati, T. Jacobson and D. Mattingly, High-energy constraints on Lorentz symmetry violations, hep-ph/0110094 [INSPIRE].

  25. T. Jacobson, S. Liberati and D. Mattingly, TeV astrophysics constraints on Planck scale Lorentz violation, Phys. Rev. D 66 (2002) 081302 [hep-ph/0112207] [INSPIRE].

    ADS  Google Scholar 

  26. T. Jacobson, S. Liberati and D. Mattingly, Threshold effects and Planck scale Lorentz violation: Combined constraints from high-energy astrophysics, Phys. Rev. D 67 (2003) 124011 [hep-ph/0209264] [INSPIRE].

    ADS  Google Scholar 

  27. D. Mattingly, T. Jacobson and S. Liberati, Threshold configurations in the presence of Lorentz violating dispersion relations, Phys. Rev. D 67 (2003) 124012 [hep-ph/0211466] [INSPIRE].

    ADS  Google Scholar 

  28. T. Jacobson, S. Liberati and D. Mattingly, A Strong astrophysical constraint on the violation of special relativity by quantum gravity, Nature 424 (2003) 1019 [astro-ph/0212190] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Jacobson, S. Liberati and D. Mattingly, Comments onImproved limit on quantum space-time modifications of Lorentz symmetry from observations of gamma-ray blazars’, gr-qc/0303001 [INSPIRE].

  30. T.A. Jacobson, S. Liberati, D. Mattingly and F. Stecker, New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93 (2004) 021101 [astro-ph/0309681] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Jacobson, S. Liberati and D. Mattingly, Quantum gravity phenomenology and Lorentz violation, Springer Proc. Phys. 98 (2005) 83 [gr-qc/0404067] [INSPIRE].

    Article  Google Scholar 

  32. T. Jacobson, S. Liberati and D. Mattingly, Astrophysical bounds on Planck suppressed Lorentz violation, Lect. Notes Phys. 669 (2005) 101 [hep-ph/0407370] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Jacobson, S. Liberati and D. Mattingly, Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints, Annals Phys. 321 (2006) 150 [astro-ph/0505267] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].

    Google Scholar 

  35. D. Colladay and V. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].

    ADS  Google Scholar 

  36. V. Kostelecky and S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys. Rev. D 39 (1989) 683 [INSPIRE].

    ADS  Google Scholar 

  37. V. Kostelecky, Gravity, Lorentz violation and the standard model, Phys. Rev. D 69 (2004) 105009 [hep-th/0312310] [INSPIRE].

    ADS  Google Scholar 

  38. V. Kostelecky and R. Lehnert, Stability, causality and Lorentz and CPT violation, Phys. Rev. D 63 (2001) 065008 [hep-th/0012060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. V. Kostelecky and M. Mewes, Signals for Lorentz violation in electrodynamics, Phys. Rev. D 66 (2002)056005 [hep-ph/0205211] [INSPIRE].

    ADS  Google Scholar 

  40. V. Kostelecky and M. Mewes, Lorentz and CPT violation in neutrinos, Phys. Rev. D 69 (2004)016005 [hep-ph/0309025] [INSPIRE].

    ADS  Google Scholar 

  41. V. Kostelecky and C.D. Lane, Constraints on Lorentz violation from clock comparison experiments, Phys. Rev. D 60 (1999) 116010 [hep-ph/9908504] [INSPIRE].

    ADS  Google Scholar 

  42. V. Kostelecky and M. Mewes, Cosmological constraints on Lorentz violation in electrodynamics, Phys. Rev. Lett. 87 (2001) 251304 [hep-ph/0111026] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Bear, R. Stoner, R. Walsworth, V. Kostelecky and C.D. Lane, Limit on Lorentz and CPT violation of the neutron using a two species noble gas maser, Phys. Rev. Lett. 85 (2000) 5038 [Erratum ibid. 89 (2002) 209902] [physics/0007049] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Anselmi, Renormalization And Lorentz Symmetry Violation, PoS(CLAQG08)010.

  45. D. Anselmi and D. Buttazzo, Distance Between Quantum Field Theories As A Measure Of Lorentz Violation, Phys. Rev. D 84 (2011) 036012 [arXiv:1105.4209] [INSPIRE].

    ADS  Google Scholar 

  46. D. Anselmi, Renormalization of Lorentz violating theories, Prepared for 4th Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 8-11 Aug 2007 [INSPIRE].

  47. D. Anselmi and M. Taiuti, Vacuum Cherenkov Radiation In Quantum Electrodynamics With High-Energy Lorentz Violation, Phys. Rev. D 83 (2011) 056010 [arXiv:1101.2019] [INSPIRE].

    ADS  Google Scholar 

  48. D. Anselmi and E. Ciuffoli, Low-energy Phenomenology Of Scalarless Standard-Model Extensions With High-Energy Lorentz Violation, Phys. Rev. D 83 (2011) 056005 [arXiv:1101.2014] [INSPIRE].

    ADS  Google Scholar 

  49. D. Anselmi and E. Ciuffoli, Renormalization Of High-Energy Lorentz Violating Four Fermion Models, Phys. Rev. D 81 (2010) 085043 [arXiv:1002.2704] [INSPIRE].

    ADS  Google Scholar 

  50. D. Anselmi and M. Taiuti, Renormalization Of High-Energy Lorentz Violating QED, Phys. Rev. D 81 (2010) 085042 [arXiv:0912.0113] [INSPIRE].

  51. D. Anselmi, Standard Model Without Elementary Scalars And High Energy Lorentz Violation, Eur. Phys. J. C 65 (2010) 523 [arXiv:0904.1849] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model, Phys. Rev. D 79 (2009) 025017 [arXiv:0808.3475] [INSPIRE].

    ADS  Google Scholar 

  53. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. II. Classification, Annals Phys. 324 (2009) 1058 [arXiv:0808.3474] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. I. General properties, Annals Phys. 324 (2009) 874 [arXiv:0808.3470] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D. Anselmi, Weighted scale invariant quantum field theories, JHEP 02 (2008) 051 [arXiv:0801.1216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76 (2007)125011 [arXiv:0707.2480] [INSPIRE].

    ADS  Google Scholar 

  57. P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].

    ADS  Google Scholar 

  58. M. Visser, Lorentz symmetry breaking as a quantum field theory regulator, Phys. Rev. D 80 (2009)025011 [arXiv:0902.0590] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. M. Visser, Power-counting renormalizability of generalized Hořava gravity, arXiv:0912.4757 [INSPIRE].

  60. T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance, JHEP 10 (2009) 033 [arXiv:0905.2798] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. T.P. Sotiriou, M. Visser and S. Weinfurtner, Phenomenologically viable Lorentz-violating quantum gravity, Phys. Rev. Lett. 102 (2009) 251601 [arXiv:0904.4464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. S. Weinfurtner, T.P. Sotiriou and M. Visser, Projectable Hořava-Lifshitz gravity in a nutshell, J. Phys. Conf. Ser. 222 (2010) 012054 [arXiv:1002.0308] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Visser, Status of Hořava gravity: A personal perspective, J. Phys. Conf. Ser. 314 (2011) 012002 [arXiv:1103.5587] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Judes and M. Visser, Conservation laws inDoubly special relativity’, Phys. Rev. D 68 (2003)045001 [gr-qc/0205067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. S. Liberati, S. Sonego and M. Visser, Interpreting doubly special relativity as a modified theory of measurement, Phys. Rev. D 71 (2005) 045001 [gr-qc/0410113] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. C. Barcelo, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12 [gr-qc/0505065] [INSPIRE].

    Google Scholar 

  67. M. Visser, Acoustic black holes: Horizons, ergospheres and Hawking radiation, Class. Quant. Grav. 15 (1998) 1767 [gr-qc/9712010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Baccetti.

Additional information

ArXiv ePrint: 1111.6340

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccetti, V., Tate, K. & Visser, M. Lorentz violating kinematics: threshold theorems. J. High Energ. Phys. 2012, 87 (2012). https://doi.org/10.1007/JHEP03(2012)087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)087

Keywords

Navigation