Skip to main content
Log in

A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe an instability related to the condensation of a charged, tachyonic scalar field and construct “hairy” black hole solutions of the full non-linear system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].

  3. M.K. Benna and I.R. Klebanov, Gauge-string dualities and some applications, arXiv:0803.1315 [INSPIRE].

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  5. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  9. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  10. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Classical and Quantum Gravity 26 (2009), no. 22 224002 [arXiv:0903.3246].

    Article  MathSciNet  ADS  Google Scholar 

  11. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722.

  12. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C. Herzog, P. Kovtun and D. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [INSPIRE].

    ADS  Google Scholar 

  15. D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Y. Brihaye and B. Hartmann, Holographic superfluids as duals of rotating black strings, JHEP 09 (2010) 002 [arXiv:1006.1562] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Brihaye and B. Hartmann, Holographic superfluid/fluid/insulator phase transitions in 2 + 1 dimensions, Phys. Rev. D 83(2011) 126008 [arXiv:1101.5708] [INSPIRE].

    ADS  Google Scholar 

  18. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [INSPIRE].

    ADS  Google Scholar 

  19. J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [INSPIRE].

    ADS  Google Scholar 

  20. B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einsteins equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].

    MATH  Google Scholar 

  21. T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G.T. Horowitz and B. Way, Complete phase diagrams for a holographic superconductor/insulator system, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  24. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. S. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes, Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. I. Robinson, A solution of the Maxwell-Einstein equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 7 (1959) 351.

    MATH  Google Scholar 

  28. B. Bertotti, Uniform electromagnetic field in the theory of general relativity, Phys. Rev. 116 (1959) 1331 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Sen, Entropy function and AdS 2 /CFT 1 correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].

    Article  ADS  Google Scholar 

  32. O.J. Dias and P.J. Silva, Euclidean analysis of the entropy functional formalism, Phys. Rev. D 77 (2008) 084011 [arXiv:0704.1405] [INSPIRE].

    ADS  Google Scholar 

  33. O.J. Dias, R. Monteiro, H.S. Reall and J.E. Santos, A scalar field condensation instability of rotating Anti-de Sitter black holes, JHEP 11 (2010) 036 [arXiv:1007.3745] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. Y. Brihaye and B. Hartmann, Stability of Gauss-Bonnet black holes in Anti-de-Sitter space-time against scalar field condensation, Phys. Rev. D 84 (2011) 084008 [arXiv:1107.3384] [INSPIRE].

    ADS  Google Scholar 

  35. O.J. Dias, P. Figueras, S. Minwalla, P. Mitra, R. Monteiro, et al., Hairy black holes and solitons in global AdS 5, arXiv:1112.4447 [INSPIRE].

  36. P. Basu, J. Bhattacharya, S. Bhattacharyya, R. Loganayagam, S. Minwalla, et al., Small hairy black holes in global AdS spacetime, JHEP 10 (2010) 045 [arXiv:1003.3232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Fernandez-Gracia and B. Fiol, A no-hair theorem for extremal black branes, JHEP 11 (2009) 054 [arXiv:0906.2353] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. G. Gibbons, H. Lü, D.N. Page and C. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Z. Chong, M. Cvetič, H. Lü and C. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].

    ADS  Google Scholar 

  42. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z. Chong, M. Cvetič, H. Lü and C. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].

    ADS  Google Scholar 

  44. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Non-extremal charged rotating black holes in seven-dimensional gauged supergravity, Phys. Lett. B 626 (2005) 215 [hep-th/0412094] [INSPIRE].

    ADS  Google Scholar 

  45. M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in five dimensional U(1)3 gauged N =2 supergravity, Phys. Rev. D 70(2004) 081502 [hep-th/0407058][INSPIRE].

    ADS  Google Scholar 

  46. M. Cvetič, H. Lü and C. Pope, Charged Kerr-de Sitter black holes in five dimensions, Phys. Lett. B 598 (2004) 273 [hep-th/0406196] [INSPIRE].

    ADS  Google Scholar 

  47. J. Kunz, F. Navarro-Lerida and A.K. Petersen, Five-dimensional charged rotating black holes, Phys. Lett. B 614 (2005) 104 [gr-qc/0503010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. J. Kunz, F. Navarro-Lerida and E. Radu, Higher dimensional rotating black holes in Einstein-Maxwell theory with negative cosmological constant, Phys. Lett. B 649 (2007) 463 [gr-qc/0702086] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. Y. Brihaye and E. Radu, Five-dimensional rotating black holes in Einstein-Gauss-Bonnet theory, Phys. Lett. B 661 (2008) 167 [arXiv:0801.1021] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. Y. Brihaye, Charged, rotating black holes in Einstein-Gauss-Bonnet gravity, arXiv:1108.2779 [INSPIRE].

  51. K. Behrndt, M. Cvetič and W. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S.S. Gubser and I. Mitra, The evolution of unstable black holes in Anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, hep-th/0009126 [INSPIRE].

  55. U. Ascher, J. Christiansen and R.D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comput. 33 (1979) 659.

    Article  MathSciNet  MATH  Google Scholar 

  56. U. Ascher, J. Christiansen and R.D. Russell, Collocation Software for Boundary-Value ODEs, ACM Trans. Math. Softw. 7 (1981) 209.

    Article  MATH  Google Scholar 

  57. R. Monteiro and J.E. Santos, Negative modes and the thermodynamics of Reissner-Nordstrom black holes, Phys. Rev. D 79 (2009) 064006 [arXiv:0812.1767] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [INSPIRE].

    ADS  Google Scholar 

  61. L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet holographic superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betti Hartmann.

Additional information

ArXiv ePrint: 1112.6315

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brihaye, Y., Hartmann, B. A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time. J. High Energ. Phys. 2012, 50 (2012). https://doi.org/10.1007/JHEP03(2012)050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)050

Keywords

Navigation