QQ-system and Weyl-type transfer matrices in integrable SO(2r) spin chains

Abstract

We propose the full system of Baxter Q-functions (QQ-system) for the integrable spin chains with the symmetry of the Dr Lie algebra. We use this QQ-system to derive new Weyl-type formulas expressing transfer matrices in all symmetric and antisymmetric (fundamental) representations through r + 1 basic Q-functions. Our functional relations are consistent with the Q-operators proposed recently by one of the authors and verified explicitly on the level of operators at small finite length.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York U.S.A. (1982).

    Google Scholar 

  2. [2]

    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].

  3. [3]

    L.D. Faddeev and G.P. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter Q operator and separation of variables, Nucl. Phys. B 617 (2001) 375 [hep-th/0107193] [INSPIRE].

  5. [5]

    L.N. Lipatov, High-energy asymptotics of multicolor QCD and two-dimensional conformal field theories, Phys. Lett. B 309 (1993) 394 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N} \) = 4 Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS5/CFT4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].

    ADS  MATH  Google Scholar 

  9. [9]

    P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Hidden Grassmann Structure in the XXZ Model II: Creation Operators, Commun. Math. Phys. 286 (2009) 875 [arXiv:0801.1176] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    A. Kuniba, V.V. Mangazeev, S. Maruyama and M. Okado, Stochastic R matrix for Uq (\( {A}_n^{(1)} \)), Nucl. Phys. B 913 (2016) 248 [arXiv:1604.08304] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  12. [12]

    A. Lazarescu and V. Pasquier, Bethe Ansatz and Q-operator for the open ASEP, J. Phys. A 47 (2014) 295202 [arXiv:1403.6963].

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    E. Frenkel and D. Hernandez, Baxter’s relations and spectra of quantum integrable models, Duke Math. J. 164 (2015) 2407 [arXiv:1308.3444] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    E.K. Sklyanin, The Quantum Toda Chain, Lect. Notes Phys. 226 (1985) 196 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, pp. pp. 149–219, 5, 1996 [hep-th/9605187] [INSPIRE].

  16. [16]

    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].

  18. [18]

    A. Antonov and B. Feigin, Quantum group representations and Baxter equation, Phys. Lett. B 392 (1997) 115 [hep-th/9603105] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475 [hep-th/0105177] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    M. Rossi and R. Weston, A Generalized Q operator for Uq (\( \hat{sl_2} \)) vertex models, J. Phys. A 35 (2002) 10015 [math-ph/0207004] [INSPIRE].

  21. [21]

    C. Korff, A Q-operator for the twisted XXX model, J. Phys. A 39 (2006) 3203 [math-ph/0511022].

  22. [22]

    V.V. Bazhanov and Z. Tsuboi, Baxter’s Q-operators for supersymmetric spin chains, Nucl. Phys. B 805 (2008) 451 [arXiv:0805.4274] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    T. Kojima, Baxter’s Q-operator for the W-algebra WN, J. Phys. A 41 (2008) 355206 [arXiv:0803.3505] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    H. Boos, F. Göhmann, A. Klümper, K.S. Nirov and A.V. Razumov, Exercises with the universal R-matrix, J. Phys. A 43 (2010) 415208 [arXiv:1004.5342] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    H. Boos, F. Göhmann, A. Klümper, K.S. Nirov and A.V. Razumov, Quantum groups and functional relations for higher rank, J. Phys. A 47 (2014) 275201 [arXiv:1312.2484] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Oscillator Construction of su(n|m) Q-Operators, Nucl. Phys. B 850 (2011) 175 [arXiv:1012.6021] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    Z. Tsuboi, A note on q-oscillator realizations of Uq (gl(M |N )) for Baxter Q-operators, Nucl. Phys. B 947 (2019) 114747 [arXiv:1907.07868] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    V.V. Bazhanov, T. Lukowski, C. Meneghelli and M. Staudacher, A Shortcut to the Q-Operator, J. Stat. Mech. 1011 (2010) P11002 [arXiv:1005.3261] [INSPIRE].

    MATH  Article  Google Scholar 

  29. [29]

    V.V. Bazhanov, R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Q-Operators and Representations of Yangians, Nucl. Phys. B 850 (2011) 148 [arXiv:1010.3699] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Operators and Hamiltonians for ’nearly all’ Integrable Closed \( \mathfrak{gl} \)(n) Spin Chains, Nucl. Phys. B 874 (2013) 620 [arXiv:1112.3600] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    R. Frassek, Oscillator realisations associated to the D-type Yangian: Towards the operatorial Q-system of orthogonal spin chains, Nucl. Phys. B 956 (2020) 115063 [arXiv:2001.06825] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. [32]

    V. Kazakov and P. Vieira, From characters to quantum (super)spin chains via fusion, JHEP 10 (2008) 050 [arXiv:0711.2470] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    V. Kazakov, S. Leurent and Z. Tsuboi, Baxter’s Q-operators and operatorial Backlund flow for quantum (super)-spin chains, Commun. Math. Phys. 311 (2012) 787 [arXiv:1010.4022] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  34. [34]

    A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi and A. Zabrodin, Classical tau-function for quantum spin chains, JHEP 09 (2013) 064 [arXiv:1112.3310] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    Z. Tsuboi, Solutions of the T-system and Baxter equations for supersymmetric spin chains, Nucl. Phys. B 826 (2010) 399 [arXiv:0906.2039] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    G.P. Pronko and Y.G. Stroganov, The Complex of solutions of the nested Bethe ansatz. The A2 spin chain, J. Phys. A 33 (2000) 8267 [hep-th/9902085] [INSPIRE].

  37. [37]

    I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, Commun. Math. Phys. 188 (1997) 267 [hep-th/9604080] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  38. [38]

    P. Dorey, C. Dunning and R. Tateo, Differential equations for general SU(N ) Bethe ansatz systems, J. Phys. A 33 (2000) 8427 [hep-th/0008039] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    V. Kazakov, A.S. Sorin and A. Zabrodin, Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics, Nucl. Phys. B 790 (2008) 345 [hep-th/0703147] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    V. Kazakov, S. Leurent and D. Volin, T-system on T-hook: Grassmannian Solution and Twisted Quantum Spectral Curve, JHEP 12 (2016) 044 [arXiv:1510.02100] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    Z. Tsuboi, Analytic Bethe ansatz and functional equations for Lie superalgebra sl(r + 1|s + 1), J. Phys. A 30 (1997) 7975 [arXiv:0911.5386] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    A. Kuniba, T. Nakanishi and J. Suzuki, T-systems and Y-systems in integrable systems, J. Phys. A 44 (2011) 103001 [arXiv:1010.1344] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    I.V. Cherednik, Special bases of irreducible representations of a degenerate affine hecke algebra, Funct. Anal. Appl. 20 (1986) 76.

    MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    V. Bazhanov and N. Reshetikhin, Restricted Solid on Solid Models Connected With Simply Based Algebras and Conformal Field Theory, J. Phys. A 23 (1990) 1477 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. [45]

    Z. Tsuboi and A. Kuniba, Solutions of a discretized Toda field equation for Dr from analytic Bethe ansatz, J. Phys. A 29 (1996) 7785 [hep-th/9608002] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    A. Kuniba and J. Suzuki, Analytic Bethe Ansatz for fundamental representations of Yangians, Commun. Math. Phys. 173 (1995) 225 [hep-th/9406180] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    N.Y. Reshetikhin, A Method Of Functional Equations In The Theory Of Exactly Solvable Quantum Systems, Lett. Math. Phys. 7 (1983) 205 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    A. Klümper and P.A. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    N. Gromov, V. Kazakov, S. Leurent and Z. Tsuboi, Wronskian Solution for AdS/CFT Y-system, JHEP 01 (2011) 155 [arXiv:1010.2720] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    S.E. Derkachov and A.N. Manashov, ℛ-Matrix and Baxter \( \mathcal{Q} \)-Operators for the Noncompact SL(N,) Invariant Spin Chain, SIGMA 2 (2006) 084 [nlin/0612003].

  51. [51]

    S.E. Derkachov and A.N. Manashov, Noncompact sl(N) spin chains: BGG-resolution, Q-operators and alternating sum representation for finite dimensional transfer matrices, Lett. Math. Phys. 97 (2011) 185 [arXiv:1008.4734] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    R.I. Nepomechie, The \( {A}_m^{(1)} \) Q-system, Mod. Phys. Lett. A 35 (2020) 2050260 [arXiv:2003.06823] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    W. Fulton and J. Harris, Readings in Mathematics. Vol. 129: Representation Theory: A First Course, Springer-Verlag, New York U.S.A. (2004).

  54. [54]

    A. Okounkov and G. Olshanski, Shifted Schur functions II. Binomial formula for characters of classical groups and applications, Am. Math. Soc. Transl. 181 (1998) 245 [q-alg/9612025].

  55. [55]

    A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, Rotating Higher Spin Partition Functions and Extended BMS Symmetries, JHEP 04 (2016) 034 [arXiv:1512.03353] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. [56]

    G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on fermionic formula, math/9812022 [INSPIRE].

  57. [57]

    E. Ogievetsky and P. Wiegmann, Factorized S Matrix and the Bethe Ansatz for Simple Lie Groups, Phys. Lett. B 168 (1986) 360 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    N.J. MacKay, New factorized S matrices associated with SO(N ), Nucl. Phys. B 356 (1991) 729 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    A.N. Kirillov and N.Y. Reshetikhin, Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple lie algebras, J. Sov. Math. 52 (1990) 3156.

    Article  Google Scholar 

  60. [60]

    S. Ekhammar, H. Shu and D. Volin, Extended systems of Baxter Q-functions and fused flags I: simply-laced case, arXiv:2008.10597 [INSPIRE].

  61. [61]

    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    D. Arnaudon, A. Molev and E. Ragoucy, On the R-matrix realization of Yangians and their representations, Ann. Henri Poincaré 7 (2006) 1269 [math/0511481].

  63. [63]

    N.Y. Reshetikhin, Integrable Models of Quantum One-dimensional Magnets With O(N ) and Sp(2k) Symmetry, Theor. Math. Phys. 63 (1985) 555 [INSPIRE].

    Article  Google Scholar 

  64. [64]

    A.P. Isaev, D. Karakhanyan and R. Kirschner, Orthogonal and symplectic Yangians and Yang-Baxter R-operators, Nucl. Phys. B 904 (2016) 124 [arXiv:1511.06152] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    H.J. de Vega and M. Karowski, Exact Bethe Ansatz Solution of O(2n) Symmetric Theories, Nucl. Phys. B 280 (1987) 225 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    M.J. Martins and P.B. Ramos, The Algebraic Bethe ansatz for rational braid-monoid lattice models, Nucl. Phys. B 500 (1997) 579 [hep-th/9703023] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    A. Gerrard and V. Regelskis, Nested algebraic Bethe ansatz for deformed orthogonal and symplectic spin chains, Nucl. Phys. B 956 (2020) 115021 [arXiv:1912.11497] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  68. [68]

    D. Masoero, A. Raimondo and D. Valeri, Bethe Ansatz and the Spectral Theory of Affine Lie Algebra-Valued Connections I. The simply-laced Case, Commun. Math. Phys. 344 (2016) 719 [arXiv:1501.07421] [INSPIRE].

  69. [69]

    E. Frenkel, P. Koroteev, D.S. Sage and A.M. Zeitlin, q-Opers, QQ-Systems, and Bethe Ansatz, arXiv:2002.07344 [INSPIRE].

  70. [70]

    V. Kazakov, Quantum Spectral Curve of 𝛾-twisted \( \mathcal{N} \) = 4 SYM theory and fishnet CFT, Rev. Math. Phys. 30 (2018) 1840010 [arXiv:1802.02160] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    C. Marboe and D. Volin, Fast analytic solver of rational Bethe equations, J. Phys. A 50 (2017) 204002 [arXiv:1608.06504] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  72. [72]

    I. Bernstein, I.M. Gelfand and S.I. Gelfand, Differential operators on the base affine space and a study of g-modules, in Lie groups and their representations. Proceedings of Summer School, Bolyai János Math. Soc., Budapest Hungary (1971), Halsted Press, New York U.S.A. (1975), pg. 21.

  73. [73]

    A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. 1: Functional relations and representation theory, Int. J. Mod. Phys. A 9 (1994) 5215 [hep-th/9309137] [INSPIRE].

  74. [74]

    R. Shankar and E. Witten, The S Matrix of the Kinks of the (gyψ)2 Model, Nucl. Phys. B 141 (1978) 349 [Erratum ibid. 148 (1979) 538] [INSPIRE].

  75. [75]

    R. Frassek and V. Pestun, A Family of GLr Multiplicative Higgs Bundles on Rational Base, SIGMA 15 (2019) 031 [arXiv:1808.00799] [INSPIRE].

    MATH  Google Scholar 

  76. [76]

    W. Nakai and T. Nakanishi, Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type Dn , J. Algebr. Comb. 26 (2007) 253.

    MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    R. Kedem, Q-systems as cluster algebras, J. Phys. A 41 (2008) 194011 [arXiv:0712.2695] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  78. [78]

    P. Di Francesco and R. Kedem, Q-systems as cluster algebras II: Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009) 183 [arXiv:0803.0362] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  79. [79]

    S. Leurent, Integrable systems and AdS/CFT duality, Ph.D. Thesis, Paris Université IV, Paris France (2012) [arXiv:1206.4061] [INSPIRE].

  80. [80]

    A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, hep-th/0604128 [INSPIRE].

  81. [81]

    R. Frassek and I.M. Szécsényi, Q-operators for the open Heisenberg spin chain, Nucl. Phys. B 901 (2015) 229 [arXiv:1509.04867] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    P. Baseilhac and Z. Tsuboi, Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators, Nucl. Phys. B 929 (2018) 397 [arXiv:1707.04574] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    B. Vlaar and R. Weston, A Q-operator for open spin chains I. Baxter’s TQ relation, J. Phys. A 53 (2020) 245205 [arXiv:2001.10760] [INSPIRE].

  84. [84]

    R. Frassek, C. Marboe and D. Meidinger, Evaluation of the operatorial Q-system for non-compact super spin chains, JHEP 09 (2017) 018 [arXiv:1706.02320] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  85. [85]

    J. Balog and A. Hegedus, TBA equations for the mass gap in the O(2r) non-linear σ-models, Nucl. Phys. B 725 (2005) 531 [hep-th/0504186] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  86. [86]

    D. Chicherin, S. Derkachov and A.P. Isaev, Conformal group: R-matrix and star-triangle relation, JHEP 04 (2013) 020 [arXiv:1206.4150] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  87. [87]

    O. Gürdoğan and V. Kazakov, New Integrable 4D Quantum Field Theories from Strongly Deformed Planar \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

  88. [88]

    B. Basso, G. Ferrando, V. Kazakov and D.-l. Zhong, Thermodynamic Bethe Ansatz for Biscalar Conformal Field Theories in any Dimension, Phys. Rev. Lett. 125 (2020) 091601 [arXiv:1911.10213] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  89. [89]

    A.B. Zamolodchikov, ’Fishnet’ diagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63 [INSPIRE].

  90. [90]

    N. Gromov, Introduction to the Spectrum of N = 4 SYM and the Quantum Spectral Curve, arXiv:1708.03648 [INSPIRE].

  91. [91]

    N. Gromov and A. Sever, Quantum fishchain in AdS5 , JHEP 10 (2019) 085 [arXiv:1907.01001] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  92. [92]

    N. Gromov and F. Levkovich-Maslyuk, Quark-anti-quark potential in \( \mathcal{N} \) = 4 SYM, JHEP 12 (2016) 122 [arXiv:1601.05679] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  93. [93]

    A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of the \( \mathcal{N} \) = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 021601 [arXiv:1403.1859] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    D. Bombardelli, A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, The full Quantum Spectral Curve for AdS4/CFT3, JHEP 09 (2017) 140 [arXiv:1701.00473] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  95. [95]

    D. Bombardelli, A. Cavaglià, R. Conti and R. Tateo, Exploring the spectrum of planar AdS4/CFT3 at finite coupling, JHEP 04 (2018) 117 [arXiv:1803.04748] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  96. [96]

    A. Braverman, M. Finkelberg and H. Nakajima, Coulomb branches of 3d \( \mathcal{N} \) = 4 quiver gauge theories and slices in the affine Grassmannian, Adv. Theor. Math. Phys. 23 (2019) 75 [arXiv:1604.03625] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  97. [97]

    H. Nakajima and A. Weekes, Coulomb branches of quiver gauge theories with symmetrizers, arXiv:1907.06552 [INSPIRE].

  98. [98]

    R. Frassek, V. Pestun and A. Tsymbaliuk, Lax matrices from antidominantly shifted Yangians and quantum affine algebras, arXiv:2001.04929 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gwenäel Ferrando.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.04336

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrando, G., Frassek, R. & Kazakov, V. QQ-system and Weyl-type transfer matrices in integrable SO(2r) spin chains. J. High Energ. Phys. 2021, 193 (2021). https://doi.org/10.1007/JHEP02(2021)193

Download citation

Keywords

  • Bethe Ansatz
  • Lattice Integrable Models