Wilson loops in circular quiver SCFTs at strong coupling

Abstract

We study circular BPS Wilson loops in the \( \mathcal{N} \) = 2 superconformal n-node quiver theories at large N and strong ’t Hooft coupling by using localization. We compute the expectation values of Wilson loops in the limit when the ’t Hooft couplings are hierarchically different and when they are nearly equal. Based on these results, we make a conjecture for arbitrary strong couplings.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. K. Erickson, G. W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    N. Drukker and D. J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A. E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    S.-J. Rey and T. Suyama, Exact results and holography of Wilson loops in N = 2 superconformal (quiver) gauge theories, JHEP 01 (2011) 136 [arXiv:1001.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    V. Mitev and E. Pomoni, Exact effective couplings of four dimensional gauge theories with N = 2 supersymmetry, Phys. Rev. D 92 (2015) 125034 [arXiv:1406.3629] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    V. Mitev and E. Pomoni, Exact Bremsstrahlung and effective couplings, JHEP 06 (2016) 078 [arXiv:1511.02217] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    A. Pini, D. Rodriguez-Gomez and J. G. Russo, Large N correlation functions N = 2 superconformal quivers, JHEP 08 (2017) 066 [arXiv:1701.02315] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    M. Billò, F. Galvagno, P. Gregori and A. Lerda, Correlators between Wilson loop and chiral operators in N = 2 conformal gauge theories, JHEP 03 (2018) 193 [arXiv:1802.09813] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    M. Billò, F. Galvagno and A. Lerda, BPS Wilson loops in generic conformal N = 2 SU(N ) SYM theories, JHEP 08 (2019) 108 [arXiv:1906.07085] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    K. Zarembo, Quiver CFT at strong coupling, JHEP 06 (2020) 055 [arXiv:2003.00993] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    B. Fiol, J. Martfnez-Montoya and A. Rios Fukelman, The planar limit of N = 2 superconformal quiver theories, JHEP 08 (2020) 161 [arXiv:2006.06379] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    M. Beccaria, M. Billò, F. Galvagno, A. Hasan and A. Lerda, N = 2 conformal SYM theories at large N , JHEP 09 (2020) 116 [arXiv:2007.02840] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    I. R. Klebanov and N. A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Gadde, E. Pomoni and L. Rastelli, Spin chains in N = 2 superconformal theories: from the Z2 quiver to superconformal QCD, JHEP 06 (2012) 107 [arXiv:1006.0015] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    X. Chen-Lin, J. Gordon and K. Zarembo, N = 2 super-Yang-Mills theory at strong coupling, JHEP 11 (2014) 057 [arXiv:1408.6040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS5 × S5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Faraggi, L. A. Pando Zayas, G. A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. [23]

    F. Passerini and K. Zarembo, Wilson loops in N = 2 super-Yang-Mills from matrix model, JHEP 09 (2011) 102 [Erratum ibid. 10 (2011) 065] [arXiv:1106.5763] [INSPIRE].

  24. [24]

    N. Arkani-Hamed, A. G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    C. T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    V. Forini, A. A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS5 × S5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    D. Medina-Rincon, A. A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS5 × S5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hao Ouyang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.03531

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouyang, H. Wilson loops in circular quiver SCFTs at strong coupling. J. High Energ. Phys. 2021, 178 (2021). https://doi.org/10.1007/JHEP02(2021)178

Download citation

Keywords

  • AdS-CFT Correspondence
  • Wilson
  • ’t Hooft and Polyakov loops