Fluctuating relativistic hydrodynamics from Crooks theorem

Abstract

We use the Crooks fluctuation theorem [1, 2] together with Zubarev hydro- dynamics [3] to develop a bottom-up theory of hydrodynamic fluctuations. We also use thermodynamic uncertainity relations to estimate bottom-up limits to dissipative transport coefficients.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Crooks, The entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60 (1999) 2721 [cond-mat/9901352].

  2. [2]

    https://en.wikipedia.org/wiki/Crooks_fluctuation_theorem

  3. [3]

    F. Becattini, M. Buzzegoli and E. Grossi, Reworking the Zubarev’s approach to non-equilibrium quantum statistical mechanics, Particles 2 (2019) 197 [arXiv:1902.01089] [INSPIRE].

    Article  Google Scholar 

  4. [4]

    R. Derradi de Souza, T. Koide and T. Kodama, Hydrodynamic approaches in relativistic heavy ion reactions, Prog. Part. Nucl. Phys. 86 (2016) 35 [arXiv:1506.03863] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017) 193 [arXiv:1606.06198] [INSPIRE].

  6. [6]

    E.M. Lifshitz and L.D. Landau, Fluid Mechanics, Butterworth-Heinemann, U.K. (1987).

    Google Scholar 

  7. [7]

    E.M. Lifshitz and L.D. Landau, Statistical mechanics part 2, Butterworth-Heinemann, U.K. (1987).

    Google Scholar 

  8. [8]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    X. An, G. Basar, M. Stephanov and H.-U. Yee, Relativistic hydrodynamic fluctuations, Phys. Rev. C 100 (2019) 024910 [arXiv:1902.09517] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Bluhm et al., Dynamics of critical fluctuations: theory — phenomenology — heavy-ion collisions, Nucl. Phys. A 1003 (2020) 122016 [arXiv:2001.08831] [INSPIRE].

    Article  Google Scholar 

  11. [11]

    M. Singh, C. Shen, S. McDonald, S. Jeon and C. Gale, Hydrodynamic fluctuations in relativistic heavy-ion collisions, Nucl. Phys. A 982 (2019) 319 [arXiv:1807.05451] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    Z. Lazar, L. Csernai, D. Molnar and I. Lazar, Fluctuation and dissipation in discretized fluid dynamics, coontribution to 8th International Workshop on Multiparticle Production: Correlations and Fluctuations ’98 (CF 98), June 14–21, Matrahaza, Hungary (1998).

  13. [13]

    L.P. Csernai, S. Jeon and J.I. Kapusta, Fluctuation and dissipation in classical many particle systems, Phys. Rev. A 56 (1997) 6668 [nucl-th/9708033] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    D. Montenegro, R. Ryblewski and G. Torrieri, Relativistic fluid dynamics and its extensions as an effective field theory, Acta Phys. Polon. B 50 (2019) 1275 [arXiv:1903.08729] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    G. Torrieri, Viscosity of an ideal relativistic quantum fluid: a perturbative study, Phys. Rev. D 85 (2012) 065006 [arXiv:1112.4086] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    T. Burch and G. Torrieri, Indications of a non-trivial vacuum in the effective theory of perfect fluids, Phys. Rev. D 92 (2015) 016009 [arXiv:1502.05421] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    D. Montenegro and G. Torrieri, Lagrangian formulation of relativistic Israel-Stewart hydrodynamics, Phys. Rev. D 94 (2016) 065042 [arXiv:1604.05291] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    S. Endlich, A. Nicolis, R. Rattazzi and J. Wang, The quantum mechanics of perfect fluids, JHEP 04 (2011) 102 [arXiv:1011.6396] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    B. Gripaios and D. Sutherland, Quantum Field Theory of Fluids, Phys. Rev. Lett. 114 (2015) 071601 [arXiv:1406.4422] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    D. Montenegro, L. Tinti and G. Torrieri, Ideal relativistic fluid limit for a medium with polarization, Phys. Rev. D 96 (2017) 056012 [Addendum ibid. 96 (2017) 079901] [arXiv:1701.08263] [INSPIRE].

  21. [21]

    D. Montenegro and G. Torrieri, Causality and dissipation in relativistic polarizable fluids, Phys. Rev. D 100 (2019) 056011 [arXiv:1807.02796] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    D. Montenegro and G. Torrieri, Linear response theory and effective action of relativistic hydrodynamics with spin, Phys. Rev. D 102 (2020) 036007 [arXiv:2004.10195] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    F. Becattini, An introduction to the statistical hadronization model, arXiv:0901.3643 [INSPIRE].

  24. [24]

    L.V. Delacrétaz, T. Hartman, S.A. Hartnoll and A. Lewkowycz, Thermalization, viscosity and the averaged null energy condition, JHEP 10 (2018) 028 [arXiv:1805.04194] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  25. [25]

    R. Haag, N.M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Commun. Math. Phys. 5 (1967) 215 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011) [INSPIRE].

  27. [27]

    T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys. 90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    C. De Lellis and L. Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010) 225 [arXiv:0712.3288].

    MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, arXiv:1709.10033 [INSPIRE].

  30. [30]

    T. Buckmaster and V. Vicol, Convex integration and phenomenologies in turbulence, arXiv:1901.09023.

  31. [31]

    P. Constantin, A. Tarfuleia and V. Vicol, Absence of anomalous dissipation of energy in forced two dimensional fluid equations, arXiv:1305.7089.

  32. [32]

    B.R. Pearson, T.A. Yousef, N.E.L. Haugen, A. Brandenburg and P.-A. Krogstad, The zeroth law of turbulence: isotropic turbulence simulations revisited, Phys. Rev. E 70 (2004) 056301 [physics/0404114] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Westview Press, U.S.A. (2003).

    Google Scholar 

  34. [34]

    A.M. Timpanaro, G. Guarnieri, J. Goold and G.T. Landi, Thermodynamic uncertainty relations from exchange fluctuation theorems, Phys. Rev. Lett. 123 (2019) 090604 [arXiv:1904.07574].

    ADS  Article  Google Scholar 

  35. [35]

    G. Guarnieri, G.T. Landi, S.R. Clark and J. Goold, Thermodynamics of precision in quantum non equilibrium steady states, Phys. Rev. Res. 1 (2019) 033021 [arXiv:1901.10428].

    Article  Google Scholar 

  36. [36]

    Z. Jiang, Quantum Fisher information for states in exponential form, Phys. Rev. A 89 (2014) 032128 [arXiv:1310.2687] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    P. Talkner and P. Hanggi, Colloquium: statistical mechanics and thermodynamics at strong coupling: quantum and classical, arXiv:1911.11660.

  38. [38]

    P. Strasberg and M. Esposito, Measurability of nonequilibrium thermodynamics in terms of the Hamiltonian of mean force, Phys. Rev. E 101 (2020) 050101 [arXiv:2001.08917].

    ADS  Article  Google Scholar 

  39. [39]

    F. Becattini, Polarization in relativistic fluids: a quantum field theoretical derivation, 4, 2020 [arXiv:2004.04050] [INSPIRE].

  40. [40]

    F. Becattini, Covariant statistical mechanics and the stress-energy tensor, Phys. Rev. Lett. 108 (2012) 244502 [arXiv:1201.5278] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    L. Kadanoff and P. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    S. Deser and D. Boulware, Stress-tensor commutators and Schwinger terms, J. Math. Phys. 8 (1967) 1468 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A. Czajka and S. Jeon, Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation, Phys. Rev. C 95 (2017) 064906 [arXiv:1701.07580] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M. Caselle, G. Costagliola, A. Nada, M. Panero and A. Toniato, Jarzynski’s theorem for lattice gauge theory, Phys. Rev. D 94 (2016) 034503 [arXiv:1604.05544] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    D.T. Son and A.O. Starinets, Viscosity, black holes, and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: An absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84 (2011) 025006 [arXiv:1104.1586] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10 (2019) 034 [arXiv:1907.08191] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    L. Gavassino, M. Antonelli and B. Haskell, When the entropy has no maximum: a new perspective on the instability of the first-order theories of dissipation, Phys. Rev. D 102 (2020) 043018 [arXiv:2006.09843] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    M. Shokri and F. Taghinavaz, Conformal Bjorken flow in the general frame and its attractor: Similarities and discrepancies with the Müller-Israel-Stewart formalism, Phys. Rev. D 102 (2020) 036022 [arXiv:2002.04719] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    R. Bass, Stochastic processes, Cambridge University Press, Cambridge U.K. (2011).

    Google Scholar 

  52. [52]

    G. Torrieri, Swimming and swirling colorful ghosts, arXiv:1810.12468 [INSPIRE].

  53. [53]

    C.R. Galley, D. Tsang and L.C. Stein, The principle of stationary nonconservative action for classical mechanics and field theories, arXiv:1412.3082 [INSPIRE].

  54. [54]

    C.R. Galley, Classical mechanics of nonconservative systems, Phys. Rev. Lett. 110 (2013) 174301 [arXiv:1210.2745] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    M. Nemes and A. de Toledo Piza, A quantum phenomenology of viscosity, IFUSP/P-89 (1977).

  56. [56]

    P. Fries and I.A. Reyes, Entanglement spectrum of chiral fermions on the torus, Phys. Rev. Lett. 123 (2019) 211603 [arXiv:1905.05768] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    Z. Tu, D.E. Kharzeev and T. Ullrich, Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales, Phys. Rev. Lett. 124 (2020) 062001 [arXiv:1904.11974] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    C. Barcelo, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12 [gr-qc/0505065] [INSPIRE].

    MATH  Article  Google Scholar 

  60. [60]

    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    G. Torrieri, Holography in a background-independent effective theory, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1550075 [arXiv:1501.00435] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgio Torrieri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.09224

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torrieri, G. Fluctuating relativistic hydrodynamics from Crooks theorem. J. High Energ. Phys. 2021, 175 (2021). https://doi.org/10.1007/JHEP02(2021)175

Download citation

Keywords

  • Heavy Ion Phenomenology
  • Phenomenological Models