Classification of primary constraints of quadratic non-metricity theories of gravity


We perform the ADM decomposition of a five-parameter family of quadratic non-metricity theories and study their conjugate momenta. After systematically identifying all possible conditions which can be imposed on the parameters such that different sets of primary constraints arise, we find that the five-parametric theory space can be compartmentalized into nine different sectors, based on the presence or absence of primary constraints. This classification allows to dismiss certain classes of theories as unphysical and invites further investigations into the remaining sectors, which may contain phenomenologically interesting modifications of General Relativity.

A preprint version of the article is available at ArXiv.


  1. [1]

    R. Aldrovandi and J. G. Pereira, Teleparallel gravity, Springer, Germany (2013).

    Google Scholar 

  2. [2]

    Y.-F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, f (T) teleparallel gravity and cosmology, Rept. Prog. Phys. 79 (2016) 106901 [arXiv:1511.07586] [INSPIRE].

  3. [3]

    M. Krssak, R. J. van den Hoogen, J. G. Pereira, C. G. Böhmer and A. A. Coley, Teleparallel theories of gravity: illuminating a fully invariant approach, Class. Quant. Grav. 36 (2019) 183001 [arXiv:1810.12932] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Beltrán Jiménez, L. Heisenberg and T. S. Koivisto, Teleparallel Palatini theories, JCAP 08 (2018) 039 [arXiv:1803.10185] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J. Beltrán Jiménez, L. Heisenberg and T. Koivisto, Coincident general relativity, Phys. Rev. D 98 (2018) 044048 [arXiv:1710.03116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    J. Beltrán Jiménez, L. Heisenberg, T. S. Koivisto and S. Pekar, Cosmology in f (Q) geometry, Phys. Rev. D 101 (2020) 103507 [arXiv:1906.10027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math. 2 (1950) 129.

  8. [8]

    J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Phys. Rev. 83 (1951) 1018 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    P. A. M. Dirac, Lectures on quantum mechanics, Dover Publications, Boston, U.S.A. (1964).

    Google Scholar 

  10. [10]

    J. M. Martín-García, xAct: efficient tensor computer algebra for the Wolfram Language,

  11. [11]

    F. D’Ambrosio, M. Garg, L. Heisenberg and S. Zentarra, ADM formulation and Hamiltonian analysis of coincident general relativity, arXiv:2007.03261 [INSPIRE].

Download references

Author information



Corresponding author

Correspondence to Fabio D’Ambrosio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.05064

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, F., Heisenberg, L. Classification of primary constraints of quadratic non-metricity theories of gravity. J. High Energ. Phys. 2021, 170 (2021).

Download citation


  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM