Heisenberg spin chain as a worldsheet coordinate for lightcone quantized string

Abstract

Although the energy spectrum of the Heisenberg spin chain on a circle defined by

$$ H=\frac{1}{4}\sum \limits_{k=1}^M\left({\sigma}_k^x{\sigma}_{k+1}^x+{\sigma}_k^y{\sigma}_{k+1}^y+\Delta {\sigma}_k^z{\sigma}_{k+1}^z\right) $$

is well known for any fixed M, the boundary conditions vary according to whether M ∈ 4ℕ + r, where r = 1, 0, 1, 2, and also according to the parity of the number of overturned spins in the state, In string theory all these cases must be allowed because interactions involve a string with M spins breaking into strings with M1 < M and M − M1 spins (or vice versa). We organize the energy spectrum and degeneracies of H in the case ∆ = 0 where the system is equivalent to a system of free fermions. In spite of the multiplicity of special cases, in the limit M → ∞ the spectrum is that of a free compactified worldsheet field. Such a field can be interpreted as a compact transverse string coordinate x(σ) ≡ x(σ) + R0. We construct the bosonization formulas explicitly in all separate cases, and for each sector give the Virasoro conformal generators in both fermionic and bosonic formulations. Furthermore from calculations in the literature for selected classes of excited states, there is strong evidence that the only change for ∆ ≠ 0 is a change in the compactification radius R0 → R. As ∆ → −1 this radius goes to infinity, giving a concrete example of noncompact space emerging from a discrete dynamical system. Finally we apply our work to construct the three string vertex implied by a string whose bosonic coordinates emerge from this mechanism.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. B. Thorn, Space from String Bits, JHEP 11 (2014) 110 [arXiv:1407.8144] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    R. Giles and C. B. Thorn, A Lattice Approach to String Theory, Phys. Rev. D 16 (1977) 366 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    C. B. Thorn, Reformulating string theory with the 1/N expansion, in The First International A.D. Sakharov Conference on Physics, pp. 0447–454 (1991); published in Sakharov memorial lectures in physics, vol. 1, L.V. Keldysh and V.Ya. Fainberg eds., Nova Science Publishers, Commack, NY, pp. 447–453 (1992) [hep-th/9405069] [INSPIRE].

  4. [4]

    F. Gliozzi, J. Scherk and D. I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    P. Ramond, Dual Theory for Free Fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A. Neveu and J. H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Neveu, J. H. Schwarz and C. B. Thorn, Reformulation of the Dual Pion Model, Phys. Lett. B 35 (1971) 529 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    C. B. Thorn, Embryonic Dual Model for Pions and Fermions, Phys. Rev. D 4 (1971) 1112 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. Neveu and J. H. Schwarz, Quark Model of Dual Pions, Phys. Rev. D 4 (1971) 1109 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

  11. [11]

    S. Sun and C. B. Thorn, Stable String Bit Models, Phys. Rev. D 89 (2014) 105002 [arXiv:1402.7362] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    G. Chen and S. Sun, Numerical Study of the Simplest String Bit Model, Phys. Rev. D 93 (2016) 106004 [arXiv:1602.02166] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    S. Sun, Aspects of Stable String Bit Models, Ph.D. Thesis, University of Florida (2019).

  14. [14]

    P. Goddard, C. Rebbi and C. B. Thorn, Lorentz covariance and the physical states in dual resonance models, Nuovo Cim. A 12 (1972) 425 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    P. Goddard, J. Goldstone, C. Rebbi and C. B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    O. Bergman and C. B. Thorn, String bit models for superstring, Phys. Rev. D 52 (1995) 5980 [hep-th/9506125] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    K. Bardakci and M. B. Halpern, New dual quark models, Phys. Rev. D 3 (1971) 2493 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    M. B. Green and J. H. Schwarz, Supersymmetrical Dual String Theory, Nucl. Phys. B 181 (1981) 502 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    C. B. Thorn, 1/N Perturbations in Superstring Bit Models, Phys. Rev. D 93 (2016) 066003 [arXiv:1512.08439] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    C. B. Thorn, Protostring Scattering Amplitudes, Phys. Rev. D 94 (2016) 106009 [arXiv:1607.04237] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    H. A. Bethe, Zur Theorie des Ferromagnetismus, Z. Phys. 61 (1930) 206.

    ADS  Article  Google Scholar 

  22. [22]

    C.-N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin spin interactions. 1. Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150 (1966) 321 [INSPIRE].

  23. [23]

    C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin spin interactions. 2. Properties of the ground state energy per lattice site for an infinite system, Phys. Rev. 150 (1966) 327 [INSPIRE].

  24. [24]

    E. H. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals Phys. 16 (1961) 407 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    R. Giles, L. D. McLerran and C. B. Thorn, The string representation for a field theory with internal symmetry, Phys. Rev. D 17 (1978) 2058 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Mandelstam, Interacting String Picture of Dual Resonance Models, Nucl. Phys. B 64 (1973) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. Mandelstam, Interacting String Picture of the Neveu-Schwarz-Ramond Model, Nucl. Phys. B 69 (1974) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    S. Mandelstam, Lorentz Properties of the Three-String Vertex, Nucl. Phys. B 83 (1974) 413 [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M. B. Green, J. H. Schwarz and L. Brink, Superfield Theory of Type II Superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    K. Hornfeck, Three Reggeon Light Cone Vertex of the Neveu-Schwarz String, Nucl. Phys. B 293 (1987) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    N. Berkovits, Supersheet Functional Integration and the Interacting Neveu-Schwarz String, Nucl. Phys. B 304 (1988) 537 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles B. Thorn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.13419

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thorn, C.B. Heisenberg spin chain as a worldsheet coordinate for lightcone quantized string. J. High Energ. Phys. 2021, 162 (2021). https://doi.org/10.1007/JHEP02(2021)162

Download citation

Keywords

  • Conformal Field Models in String Theory
  • Bethe Ansatz
  • Matrix Models