Chaos exponents of SYK traversable wormholes

Abstract

In this paper we study the chaos exponent, the exponential growth rate of the out-of-time-ordered four point functions, in a two coupled SYK models which exhibits a first order phase transition between the high temperature black hole phase and the low temperature gapped phase interpreted as a traversable wormhole. We see that as the temperature decreases the chaos exponent exhibits a discontinuous fall-off from the value of order the universal bound 2π/β at the critical temperature of the phase transition, which is consistent with the expected relation between black holes and strong chaos. Interestingly, the chaos exponent is small but non-zero even in the wormhole phase. This is surprising but consistent with the observation on the decay rate of the two point function [1], and we found the chaos exponent and the decay rate indeed obey the same temperature dependence in this regime. We also studied the chaos exponent of a closely related model with single SYK term, and found that the chaos exponent of this model is always greater than that of the two coupled model in the entire parameter space.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    X.-l. Qi and P. Zhang, The coupled SYK model at finite temperature, JHEP 05 (2020) 129 [arXiv:2003.03916] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Kitaev, A simple model of quantum holography, talk at KITP strings seminar and Entanglement 2015 program, http://online.kitp.ucsb.edu/online/entangled15/, University of California, Santa Barbara, CA, U.S.A. (2015).

  4. [4]

    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. JETP 28 (1969) 1200.

  7. [7]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proc. Roy. Soc. Lond. A 356 (1977) 375.

    ADS  Article  Google Scholar 

  9. [9]

    O. Bohigas, M. J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    J. S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  12. [12]

    H. Gharibyan, M. Hanada, S. H. Shenker and M. Tezuka, Onset of random matrix behavior in scrambling systems, JHEP 07 (2018) 124 [Erratum ibid. 02 (2019) 197] [arXiv:1803.08050] [INSPIRE].

  13. [13]

    B. Kobrin et al., Many-body chaos in the Sachdev-Ye-Kitaev model, Phys. Rev. Lett. 126 (2021) 030602 [arXiv:2002.05725] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    Y.-Z. You, A. W. W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. M. García-García and J. J. M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    Y. Jia and J. J. M. Verbaarschot, Spectral fluctuations in the Sachdev-Ye-Kitaev model, JHEP 07 (2020) 193 [arXiv:1912.11923] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

    MATH  Google Scholar 

  18. [18]

    R. Bhattacharya, D. P. Jatkar and N. Sorokhaibam, Quantum quenches and thermalization in SYK models, JHEP 07 (2019) 066 [arXiv:1811.06006] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    A. M. García-García and M. Tezuka, Many-body localization in a finite-range Sachdev-Ye-Kitaev model and holography, Phys. Rev. B 99 (2019) 054202 [arXiv:1801.03204] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    A. M. García-García, B. Loureiro, A. Romero-Bermúdez and M. Tezuka, Chaotic-integrable transition in the Sachdev-Ye-Kitaev model, Phys. Rev. Lett. 120 (2018) 241603 [arXiv:1707.02197] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  24. [24]

    P. Gao, D. L. Jafferis and A. C. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    G. Festuccia and H. Liu, The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories, JHEP 12 (2007) 027 [hep-th/0611098] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    D. A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    S. H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    S. H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    A. M. García-García, T. Nosaka, D. Rosa and J. J. M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev. D 100 (2019) 026002 [arXiv:1901.06031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    I. Amado, B. Sundborg, L. Thorlacius and N. Wintergerst, Black holes from large N singlet models, JHEP 03 (2018) 075 [arXiv:1712.06963] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    J. Engelsöy, J. Larana-Aragon, B. Sundborg and N. Wintergerst, Operator thermalisation in d > 2: Huygens or resurgence, JHEP 09 (2020) 103 [arXiv:2007.00589] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    S. Plugge, E. Lantagne-Hurtubise and M. Franz, Revival dynamics in a traversable wormhole, Phys. Rev. Lett. 124 (2020) 221601 [arXiv:2003.03914] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    D. Stanford, Many-body chaos at weak coupling, JHEP 10 (2016) 009 [arXiv:1512.07687] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].

  38. [38]

    T. Nosaka and T. Numasawa, Quantum chaos, thermodynamics and black hole microstates in the mass deformed SYK model, JHEP 08 (2020) 081 [arXiv:1912.12302] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    J. Maldacena and A. Milekhin, SYK wormhole formation in real time, arXiv:1912.03276 [INSPIRE].

  40. [40]

    E. Lantagne-Hurtubise, S. Plugge, O. Can and M. Franz, Diagnosing quantum chaos in many-body systems using entanglement as a resource, Phys. Rev. Res. 2 (2020) 013254 [arXiv:1907.01628] [INSPIRE].

    Article  Google Scholar 

  41. [41]

    A. Almheiri, A. Milekhin and B. Swingle, Universal constraints on energy flow and SYK thermalization, arXiv:1912.04912 [INSPIRE].

  42. [42]

    T. Numasawa, work in progress.

  43. [43]

    T. Nosaka and T. Numasawa, work in progress.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoki Nosaka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.10759

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosaka, T., Numasawa, T. Chaos exponents of SYK traversable wormholes. J. High Energ. Phys. 2021, 150 (2021). https://doi.org/10.1007/JHEP02(2021)150

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory
  • Holography and condensed matter physics (AdS/CMT)
  • Random Systems