Is entanglement a probe of confinement?

Abstract

We study various entanglement measures in a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons field theories by means of their dual supergravity descriptions. A generic field theory in this family possesses a mass gap but does not have a linear quark-antiquark potential. For the two limiting values of the parameter, the theories flow either to a fixed point or to a confining vacuum in the infrared. We show that entanglement measures are unable to discriminate confining theories from non-confining ones with a mass gap. This lends support on the idea that the phase transition of entanglement entropy at large-N can be caused just by the presence of a sizable scale in a theory. and just by itself should not be taken as a signal of confinement. We also examine flows passing close to a fixed point at intermediate energy scales and find that the holographic entanglement entropy, the mutual information, and the F-functions for strips and disks quantitatively match the conformal values for a range of energies.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Ghosh, R.M. Soni and S.P. Trivedi, On The Entanglement Entropy For Gauge Theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    U. Kol, C. Núñez, D. Schofield, J. Sonnenschein and M. Warschawski, Confinement, Phase Transitions and non-Locality in the Entanglement Entropy, JHEP 06 (2014) 005 [arXiv:1403.2721] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    P.V. Buividovich and M.I. Polikarpov, Numerical study of entanglement entropy in SU(2) lattice gauge theory, Nucl. Phys. B 802 (2008) 458 [arXiv:0802.4247] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  8. [8]

    P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    E. Itou, K. Nagata, Y. Nakagawa, A. Nakamura and V.I. Zakharov, Entanglement in Four-Dimensional SU(3) Gauge Theory, PTEP 2016 (2016) 061B01 [arXiv:1512.01334] [INSPIRE].

  10. [10]

    A. Rabenstein, N. Bodendorfer, P. Buividovich and A. Schäfer, Lattice study of Rényi entanglement entropy in SU(Nc) lattice Yang-Mills theory with Nc = 2, 3, 4, Phys. Rev. D 100 (2019) 034504 [arXiv:1812.04279] [INSPIRE].

  11. [11]

    J. Greensite and K. Matsuyama, Confinement criterion for gauge theories with matter fields, Phys. Rev. D 96 (2017) 094510 [arXiv:1708.08979] [INSPIRE].

  12. [12]

    A. Cherman, T. Jacobson, S. Sen and L.G. Yaffe, Higgs-confinement phase transitions with fundamental representation matter, Phys. Rev. D 102 (2020) 105021 [arXiv:2007.08539] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    C.B. Thorn, Infinite Nc QCD at finite temperature: Is there an Ultimate Temperature?, Phys. Lett. B 99 (1981) 458 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    N. Bao, A. Chatwin-Davies, B.E. Niehoff and M. Usatyuk, Bulk Reconstruction Beyond the Entanglement Wedge, Phys. Rev. D 101 (2020) 066011 [arXiv:1911.00519] [INSPIRE].

  17. [17]

    A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, arXiv:2006.06872 [INSPIRE].

  18. [18]

    N. Jokela and A. Pönni, Towards precision holography, Phys. Rev. D 103 (2021) 026010 [arXiv:2007.00010] [INSPIRE].

  19. [19]

    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  20. [20]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, New cohomogeneity one metrics with spin(7) holonomy, J. Geom. Phys. 49 (2004) 350 [math/0105119] [INSPIRE].

  21. [21]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, New complete noncompact spin(7) manifolds, Nucl. Phys. B 620 (2002) 29 [hep-th/0103155] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    A.F. Faedo, D. Mateos, D. Pravos and J.G. Subils, Mass Gap without Confinement, JHEP 06 (2017) 153 [arXiv:1702.05988] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    G.V. Dunne, Aspects of Chern-Simons theory, in Les Houches Summer School in Theoretical Physics, Session 69: Topological Aspects of Low-dimensional Systems, (1998) [hep-th/9902115] [INSPIRE].

  24. [24]

    D. Karabali, C.-j. Kim and V.P. Nair, Gauge invariant variables and the Yang-Mills-Chern-Simons theory, Nucl. Phys. B 566 (2000) 331 [hep-th/9907078] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    I.Y. Aref’eva, A. Patrushev and P. Slepov, Holographic entanglement entropy in anisotropic background with confinement-deconfinement phase transition, JHEP 07 (2020) 043 [arXiv:2003.05847] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    J. Knaute and B. Kämpfer, Holographic Entanglement Entropy in the QCD Phase Diagram with a Critical Point, Phys. Rev. D 96 (2017) 106003 [arXiv:1706.02647] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Lewkowycz, Holographic Entanglement Entropy and Confinement, JHEP 05 (2012) 032 [arXiv:1204.0588] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    S. Mahapatra, Interplay between the holographic QCD phase diagram and mutual & n-partite information, JHEP 04 (2019) 137 [arXiv:1903.05927] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On Shape Dependence and RG Flow of Entanglement Entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  30. [30]

    N. Jokela, J.M. Penín, A.V. Ramallo and D. Zoakos, Gravity dual of a multilayer system, JHEP 03 (2019) 064 [arXiv:1901.02020] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press (2014), [DOI] [arXiv:1101.0618] [INSPIRE].

  32. [32]

    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    A. Loewy and Y. Oz, Branes in special holonomy backgrounds, Phys. Lett. B 537 (2002) 147 [hep-th/0203092] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Supersymmetric nonsingular fractional D-2 branes and NS-NS 2 branes, Nucl. Phys. B 606 (2001) 18 [hep-th/0101096] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  37. [37]

    C.P. Herzog, String tensions and three-dimensional confining gauge theories, Phys. Rev. D 66 (2002) 065009 [hep-th/0205064] [INSPIRE].

  38. [38]

    H. Ooguri and C.-S. Park, Superconformal Chern-Simons Theories and the Squashed Seven Sphere, JHEP 11 (2008) 082 [arXiv:0808.0500] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    Y. Bea, E. Conde, N. Jokela and A.V. Ramallo, Unquenched massive flavors and flows in Chern-Simons matter theories, JHEP 12 (2013) 033 [arXiv:1309.4453] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, JHEP 01 (2014) 098 [arXiv:1309.6935] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    O. Ben-Ami, D. Carmi and J. Sonnenschein, Holographic Entanglement Entropy of Multiple Strips, JHEP 11 (2014) 144 [arXiv:1409.6305] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    N. Jokela and A. Pönni, Notes on entanglement wedge cross sections, JHEP 07 (2019) 087 [arXiv:1904.09582] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    C. Hoyos, N. Jokela, J.M. Penín and A.V. Ramallo, Holographic spontaneous anisotropy, JHEP 04 (2020) 062 [arXiv:2001.08218] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    Y. Nakaguchi and T. Nishioka, Entanglement Entropy of Annulus in Three Dimensions, JHEP 04 (2015) 072 [arXiv:1501.01293] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Ricci flat metrics, harmonic forms and brane resolutions, Commun. Math. Phys. 232 (2003) 457 [hep-th/0012011] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    D. Elander, A.F. Faedo, D. Mateos, D. Pravos and J.G. Subils, Mass spectrum of gapped, non-confining theories with multi-scale dynamics, JHEP 05 (2019) 175 [arXiv:1810.04656] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex CFTs, JHEP 10 (2018) 108 [arXiv:1807.11512] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    A.F. Faedo, C. Hoyos, D. Mateos and J.G. Subils, Holographic Complex Conformal Field Theories, Phys. Rev. Lett. 124 (2020) 161601 [arXiv:1909.04008] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    V. Balasubramanian, N. Jokela, A. Pönni and A.V. Ramallo, Information flows in strongly coupled ABJM theory, JHEP 01 (2019) 232 [arXiv:1811.09500] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    A. van Niekerk, Entanglement Entropy in NonConformal Holographic Theories, arXiv:1108.2294 [INSPIRE].

  56. [56]

    A. Agarwal, D. Karabali and V.P. Nair, Gauge-invariant Variables and Entanglement Entropy, Phys. Rev. D 96 (2017) 125008 [arXiv:1701.00014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    D. Elander, A.F. Faedo, D. Mateos and J.G. Subils, Phase transitions in a three-dimensional analogue of Klebanov-Strassler, JHEP 06 (2020) 131 [arXiv:2002.08279] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    K. Hashimoto, Building bulk from Wilson loops, arXiv:2008.10883 [INSPIRE].

  59. [59]

    J. Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, in Advanced School on Supersymmetry in the Theories of Fields, Strings and Branes, (1999), pp. 219–269, [hep-th/0003032] [INSPIRE].

  60. [60]

    T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev. D 99 (2019) 106014 [arXiv:1808.00446] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    K. Tamaoka, Entanglement Wedge Cross Section from the Dual Density Matrix, Phys. Rev. Lett. 122 (2019) 141601 [arXiv:1809.09109] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    A. Lala, Entanglement measures for nonconformal D-branes, Phys. Rev. D 102 (2020) 126026 [arXiv:2008.06154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    P. Jain and S. Mahapatra, Mixed state entanglement measures as probe for confinement, Phys. Rev. D 102 (2020) 126022 [arXiv:2010.07702] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    P. Benincasa and A.V. Ramallo, Holographic Kondo Model in Various Dimensions, JHEP 06 (2012) 133 [arXiv:1204.6290] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. [66]

    J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella and J.M.S. Wu, Entanglement Entropy in a Holographic Kondo Model, Fortsch. Phys. 64 (2016) 109 [arXiv:1511.03666] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    H. Watanabe et al., Partial Deconfinement at Strong Coupling on the Lattice, JHEP 02 (2021) 004 [arXiv:2005.04103] [INSPIRE].

  69. [69]

    M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP 03 (2019) 145 [Erratum ibid. 10 (2019) 029] [arXiv:1812.05494] [INSPIRE].

  70. [70]

    M. Hanada, A. Jevicki, C. Peng and N. Wintergerst, Anatomy of Deconfinement, JHEP 12 (2019) 167 [arXiv:1909.09118] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  72. [72]

    N. Jokela, J. Mas, A.V. Ramallo and D. Zoakos, Thermodynamics of the brane in Chern-Simons matter theories with flavor, JHEP 02 (2013) 144 [arXiv:1211.0630] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    D. Marolf, Chern-Simons terms and the three notions of charge, in International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of Professor Efim Fradkin, (2000), pp. 312–320, [hep-th/0006117] [INSPIRE].

  74. [74]

    A. Hashimoto, S. Hirano and P. Ouyang, Branes and fluxes in special holonomy manifolds and cascading field theories, JHEP 06 (2011) 101 [arXiv:1004.0903] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier G. Subils.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.09392

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jokela, N., Subils, J.G. Is entanglement a probe of confinement?. J. High Energ. Phys. 2021, 147 (2021). https://doi.org/10.1007/JHEP02(2021)147

Download citation

Keywords

  • Confinement
  • Gauge-gravity correspondence
  • Chern-Simons Theories