Neural-network analysis of Parton Distribution Functions from Ioffe-time pseudodistributions

Abstract

We extract two nonsinglet nucleon Parton Distribution Functions from lattice QCD data for reduced Ioffe-time pseudodistributions. We perform such analysis within the NNPDF framework, considering data coming from different lattice ensembles and dis- cussing in detail the treatment of the different source of systematics involved in the fit. We introduce a recipe for taking care of systematics and use it to perform our extraction of light-cone PDFs.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  2. [2]

    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

  3. [3]

    S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αs, and heavy-quark masses for LHC run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].

  4. [4]

    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  6. [6]

    M. Constantinou et al., Parton distributions and lattice QCD calculations: toward 3D structure, arXiv:2006.08636 [INSPIRE].

  7. [7]

    M. Constantinou, The X-dependence of hadronic parton distributions: a review on the progress of lattice QCD, in 38th international symposium on lattice field theory, (2020) [arXiv:2010.02445] [INSPIRE].

  8. [8]

    A.V. Radyushkin, Theory and applications of parton pseudodistributions, Int. J. Mod. Phys. A 35 (2020) 2030002 [arXiv:1912.04244] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    K. Cichy and M. Constantinou, A guide to light-cone PDFs from lattice QCD: an overview of approaches, techniques and results, Adv. High Energy Phys. 2019 (2019) 3036904 [arXiv:1811.07248] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  10. [10]

    C. Monahan, Recent developments in x-dependent structure calculations, PoS(LATTICE2018)018 (2018) [arXiv:1811.00678] [INSPIRE].

  11. [11]

    X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and Y. Zhao, Large-momentum effective theory, arXiv:2004.03543 [INSPIRE].

  12. [12]

    X. Ji, Parton physics on a Euclidean lattice, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A.V. Radyushkin, Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions, Phys. Rev. D 96 (2017) 034025 [arXiv:1705.01488] [INSPIRE].

  14. [14]

    B.U. Musch, P. Hagler, J.W. Negele and A. Schafer, Exploring quark transverse momentum distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213] [INSPIRE].

  15. [15]

    V. Braun, P. Gornicki and L. Mankiewicz, Ioffe-time distributions instead of parton momentum distributions in description of deep inelastic scattering, Phys. Rev. D 51 (1995) 6036 [hep-ph/9410318] [INSPIRE].

  16. [16]

    X. Ji, J.-H. Zhang and Y. Zhao, Renormalization in large momentum effective theory of parton physics, Phys. Rev. Lett. 120 (2018) 112001 [arXiv:1706.08962] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Renormalizability of quasiparton distribution functions, Phys. Rev. D 96 (2017) 094019 [arXiv:1707.03107] [INSPIRE].

  18. [18]

    A.V. Radyushkin, Quark pseudodistributions at short distances, Phys. Lett. B 781 (2018) 433 [arXiv:1710.08813] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B 767 (2017) 314 [arXiv:1612.05170] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    T. Izubuchi, X. Ji, L. Jin, I.W. Stewart and Y. Zhao, Factorization theorem relating Euclidean and light-cone parton distributions, Phys. Rev. D 98 (2018) 056004 [arXiv:1801.03917] [INSPIRE].

  21. [21]

    X. Ji, J.-H. Zhang and Y. Zhao, More on large-momentum effective theory approach to parton physics, Nucl. Phys. B 924 (2017) 366 [arXiv:1706.07416] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    L. Del Debbio, T. Giani and C.J. Monahan, Notes on lattice observables for parton distributions: nongauge theories, JHEP 09 (2020) 021 [arXiv:2007.02131] [INSPIRE].

  23. [23]

    Y.-Q. Ma and J.-W. Qiu, Exploring partonic structure of hadrons using ab initio lattice QCD calculations, Phys. Rev. Lett. 120 (2018) 022003 [arXiv:1709.03018] [INSPIRE].

  24. [24]

    Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D 98 (2018) 074021 [arXiv:1404.6860] [INSPIRE].

  25. [25]

    J. Karpie, K. Orginos, A. Rothkopf and S. Zafeiropoulos, Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks, JHEP 04 (2019) 057 [arXiv:1901.05408] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    T. Izubuchi et al., Valence parton distribution function of pion from fine lattice, Phys. Rev. D 100 (2019) 034516 [arXiv:1905.06349] [INSPIRE].

  27. [27]

    K. Cichy, L. Del Debbio and T. Giani, Parton distributions from lattice data: the nonsinglet case, JHEP 10 (2019) 137 [arXiv:1907.06037] [INSPIRE].

  28. [28]

    X. Gao et al., Valence parton distribution of the pion from lattice QCD: approaching the continuum limit, Phys. Rev. D 102 (2020) 094513 [arXiv:2007.06590] [INSPIRE].

  29. [29]

    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett. 121 (2018) 112001 [arXiv:1803.02685] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    C. Alexandrou et al., Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point, Phys. Rev. D 99 (2019) 114504 [arXiv:1902.00587] [INSPIRE].

  31. [31]

    J. Bringewatt, N. Sato, W. Melnitchouk, J.-W. Qiu, F. Steffens and M. Constantinou, Confronting lattice parton distributions with global QCD analysis, Phys. Rev. D 103 (2021) 016003 [arXiv:2010.00548] [INSPIRE].

  32. [32]

    B. Joó, J. Karpie, K. Orginos, A. Radyushkin, D. Richards and S. Zafeiropoulos, Parton distribution functions from Ioffe time pseudo-distributions, JHEP 12 (2019) 081 [arXiv:1908.09771] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    B. Joó, J. Karpie, K. Orginos, A.V. Radyushkin, D.G. Richards and S. Zafeiropoulos, Parton distribution functions from Ioffe time pseudodistributions from lattice calculations: approaching the physical point, Phys. Rev. Lett. 125 (2020) 232003 [arXiv:2004.01687] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    H.-W. Lin, J.-W. Chen, S.D. Cohen and X. Ji, Flavor structure of the nucleon sea from lattice QCD, Phys. Rev. D 91 (2015) 054510 [arXiv:1402.1462] [INSPIRE].

  35. [35]

    J.-W. Chen, S.D. Cohen, X. Ji, H.-W. Lin and J.-H. Zhang, Nucleon helicity and transversity parton distributions from lattice QCD, Nucl. Phys. B 911 (2016) 246 [arXiv:1603.06664] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    C. Alexandrou et al., Lattice calculation of parton distributions, Phys. Rev. D 92 (2015) 014502 [arXiv:1504.07455] [INSPIRE].

  37. [37]

    C. Alexandrou et al., Updated lattice results for parton distributions, Phys. Rev. D 96 (2017) 014513 [arXiv:1610.03689] [INSPIRE].

  38. [38]

    C. Monahan and K. Orginos, Quasi parton distributions and the gradient flow, JHEP 03 (2017) 116 [arXiv:1612.01584] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin and H.-W. Lin, Pion distribution amplitude from lattice QCD, Phys. Rev. D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE].

  40. [40]

    C. Alexandrou et al., A complete non-perturbative renormalization prescription for quasi-PDFs, Nucl. Phys. B 923 (2017) 394 [arXiv:1706.00265] [INSPIRE].

  41. [41]

    J. Green, K. Jansen and F. Steffens, Nonperturbative renormalization of nonlocal quark bilinears for parton quasidistribution functions on the lattice using an auxiliary field, Phys. Rev. Lett. 121 (2018) 022004 [arXiv:1707.07152] [INSPIRE].

  42. [42]

    J.-W. Chen et al., Lattice calculation of parton distribution function from LaMET at physical pion mass with large nucleon momentum, arXiv:1803.04393 [INSPIRE].

  43. [43]

    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D 98 (2018) 091503 [arXiv:1807.00232] [INSPIRE].

  44. [44]

    H.-W. Lin et al., Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett. 121 (2018) 242003 [arXiv:1807.07431] [INSPIRE].

  45. [45]

    Z.-Y. Fan, Y.-B. Yang, A. Anthony, H.-W. Lin and K.-F. Liu, Gluon quasi-parton-distribution functions from lattice QCD, Phys. Rev. Lett. 121 (2018) 242001 [arXiv:1808.02077] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    Y.-S. Liu et al., Nucleon transversity distribution at the physical pion mass from lattice QCD, arXiv:1810.05043 [INSPIRE].

  47. [47]

    J.R. Green, K. Jansen and F. Steffens, Improvement, generalization, and scheme conversion of Wilson-line operators on the lattice in the auxiliary field approach, Phys. Rev. D 101 (2020) 074509 [arXiv:2002.09408] [INSPIRE].

  48. [48]

    Y. Chai et al., Parton distribution functions of+ on the lattice, Phys. Rev. D 102 (2020) 014508 [arXiv:2002.12044] [INSPIRE].

  49. [49]

    H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang and R. Zhang, Valence-quark distribution of the kaon and pion from lattice QCD, Phys. Rev. D 103 (2021) 014516 [arXiv:2003.14128] [INSPIRE].

  50. [50]

    C. Alexandrou et al., Unpolarized and helicity generalized parton distributions of the proton within lattice QCD, Phys. Rev. Lett. 125 (2020) 262001 [arXiv:2008.10573] [INSPIRE].

  51. [51]

    K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Lattice QCD exploration of parton pseudo-distribution functions, Phys. Rev. D 96 (2017) 094503 [arXiv:1706.05373] [INSPIRE].

  52. [52]

    J. Karpie, K. Orginos and S. Zafeiropoulos, Moments of Ioffe time parton distribution functions from non-local matrix elements, JHEP 11 (2018) 178 [arXiv:1807.10933] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    B. Joó et al., Pion valence structure from Ioffe-time parton pseudodistribution functions, Phys. Rev. D 100 (2019) 114512 [arXiv:1909.08517] [INSPIRE].

  54. [54]

    M. Bhat, K. Cichy, M. Constantinou and A. Scapellato, Parton distribution functions from lattice QCD at physical quark masses via the pseudo-distribution approach, arXiv:2005.02102 [INSPIRE].

  55. [55]

    Z. Fan, R. Zhang and H.-W. Lin, Nucleon gluon distribution function from 2 + 1 + 1-flavor lattice QCD, arXiv:2007.16113 [INSPIRE].

  56. [56]

    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions, Eur. Phys. J. C 78 (2018) 217 [arXiv:1709.04325] [INSPIRE].

  57. [57]

    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: exploring universality and higher-twist effects, Phys. Rev. D 98 (2018) 094507 [arXiv:1807.06671] [INSPIRE].

  58. [58]

    R.S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu and D.G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D 99 (2019) 074507 [arXiv:1901.03921] [INSPIRE].

  59. [59]

    RQCD collaboration, Light-cone distribution amplitudes of octet baryons from lattice QCD, Eur. Phys. J. A 55 (2019) 116 [arXiv:1903.12590] [INSPIRE].

  60. [60]

    R.S. Sufian et al., Pion valence quark distribution from current-current correlation in lattice QCD, Phys. Rev. D 102 (2020) 054508 [arXiv:2001.04960] [INSPIRE].

  61. [61]

    A. Radyushkin, One-loop evolution of parton pseudo-distribution functions on the lattice, Phys. Rev. D 98 (2018) 014019 [arXiv:1801.02427] [INSPIRE].

  62. [62]

    J. Karpie, K. Orginos, A. Radyushkin and S. Zafeiropoulos, Parton distribution functions on the lattice and in the continuum, EPJ Web Conf. 175 (2018) 06032 [arXiv:1710.08288] [INSPIRE].

  63. [63]

    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

  64. [64]

    V. Bertone, S. Carrazza and N.P. Hartland, APFELgrid: a high performance tool for parton density determinations, Comput. Phys. Commun. 212 (2017) 205 [arXiv:1605.02070] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  66. [66]

    N. Hansen, The CMA evolution strategy: a tutorial, arXiv:1604.00772.

  67. [67]

    Z. Kassabov, Reportengine: a framework for declarative data analysis, Zenodo, (2019).

  68. [68]

    NNPDF collaboration, A first determination of parton distributions with theoretical uncertainties, Eur. Phys. J. C (2019) 79:838 [arXiv:1905.04311] [INSPIRE].

  69. [69]

    NNPDF collaboration, Parton distributions with theory uncertainties: general formalism and first phenomenological studies, Eur. Phys. J. C 79 (2019) 931 [arXiv:1906.10698] [INSPIRE].

  70. [70]

    J. Luis Bernal and J.A. Peacock, Conservative cosmology: combining data with allowance for unknown systematics, JCAP 07 (2018) 002 [arXiv:1803.04470] [INSPIRE].

    Article  Google Scholar 

  71. [71]

    D. Krause and P. Thörnig, JURECA: modular supercomputer at Jülich supercomputing centre, J. Large-Scale Res. Facil. JLSRF 4 (2018) A132.

    Article  Google Scholar 

  72. [72]

    SciDAC, LHPC and UKQCD collaborations, The Chroma software system for lattice QCD, Nucl. Phys. B Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

  73. [73]

    M.A. Clark, R. Babich, K. Barros, R.C. Brower and C. Rebbi, Solving lattice QCD systems of equations using mixed precision solvers on GPUs, Comput. Phys. Commun. 181 (2010) 1517 [arXiv:0911.3191] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    R. Babich, M.A. Clark and B. Joo, Parallelizing the QUDA library for multi-GPU calculations in lattice quantum chromodynamics, in SC 10 (Supercomputing 2010), (2010) [arXiv:1011.0024] [INSPIRE].

  75. [75]

    F.T. Winter, M.A. Clark, R.G. Edwards and B. Joó, A framework for lattice QCD calculations on GPUs, in 28th IEEE international parallel and distributed processing symposium, IEEE, (2014) [arXiv:1408.5925] [INSPIRE].

  76. [76]

    B. Joó et al., Lattice QCD on Intel® Xeon Phicoprocessors, Lect. Notes Comput. Sci. 7905 (2013) 40.

    Article  Google Scholar 

  77. [77]

    B. Joó, D.D. Kalamkar, T. Kurth, K. Vaidyanathan and A. Walden, Optimizing Wilson-Dirac operator and linear solvers for Intel® KNL, Lect. Notes Comput. Sci. 9945 (2016) 415.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tommaso Giani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.03996

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Del Debbio, L., Giani, T., Karpie, J. et al. Neural-network analysis of Parton Distribution Functions from Ioffe-time pseudodistributions. J. High Energ. Phys. 2021, 138 (2021). https://doi.org/10.1007/JHEP02(2021)138

Download citation

Keywords

  • Lattice field theory simulation
  • QCD Phenomenology