Orbifold groupoids

Abstract

We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the “Orbifold groupoids” which control the composition of orbifold operations. Three-dimensional TQFT’s of Dijkgraaf-Witten type will play an important role in the analysis. We briefly discuss the extension to generalized symmetries and applications to constrain RG flows.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry fractionalization, defects, and gauging of topological phases, Phys. Rev. B 100 (2019) 115147 [arXiv:1410.4540] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    D. Gaiotto and T. Johnson-Freyd, Symmetry protected topological phases and generalized cohomology, JHEP 05 (2019) 007 [arXiv:1712.07950] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    A.Y. Kitaev, On the classification of short-range entangled states, http://scgp.stonybrook.edu/video_portal/video.php?id=2010.

  5. [5]

    A. Y. Kitaev, Homotopy-theoretic approach to SPT phases in action: Z16 classification of three-dimensional superconductors, talk given at Symmetry and topology in quantum matter , January 26–30, Ipam, Los Angeles, U.S.A. (2015).

  6. [6]

    R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990) 393.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8 (2020) 015 [arXiv:1712.09542] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Tantivasadakarn, Dimensional reduction and topological invariants of symmetry-protected topological phases, Phys. Rev. B 96 (2017) 195101 [arXiv:1706.09769] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry protected topological order, Phys. Rev. B 80 (2009) 155131 [arXiv:0903.1069] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95.

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    R.B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23 (1981) 5632.

  13. [13]

    C.G. Callan, Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

  14. [14]

    X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].

  15. [15]

    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].

  16. [16]

    L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, JHEP 03 (2018) 189 [arXiv:1704.02330] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, American Mathematical Society, U.S.A. (2016).

    Google Scholar 

  18. [18]

    V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transf. Group 8 (2003) 177 [math/0111139].

  19. [19]

    V. Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Rex. Not. 2003 (2003) 1507 [math/0202130].

  20. [20]

    J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: partition functions, Nucl. Phys. B 646 (2002) 353.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Defect lines, dualities, and generalised orbifolds, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), August 3–8, Prague, Czech Republic (2009), arXiv:0909.5013 [INSPIRE].

  22. [22]

    N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7 (2016) 203 [arXiv:1210.6363] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    C. Vafa, Quantum symmetries of string vacua, Mod. Phys. Lett. A 4 (1989) 1615 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, arXiv:0909.3140.

  27. [27]

    J. Fuchs, J. Priel, C. Schweigert and A. Valentino, On the Brauer groups of symmetries of abelian Dijkgraaf-Witten theories, Commun. Math. Phys. 339 (2015) 385 [arXiv:1404.6646] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    D. Nikshych and B. Riepel, Categorical Lagrangian Grassmannians and Brauer-Picard groups of pointed fusion categories, J. Algebra 411 (2014) 191 [arXiv:1309.5026v2].

    MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    C. Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273 (1986) 592.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    E.R. Sharpe, Discrete torsion, Phys. Rev. D 68 (2003) 126003 [hep-th/0008154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    Y. Tachikawa, Topological phases and relativistic quantum field theories, talk given at the CERN Winter School on Supergravity, Strings and Gauge Theory 2018 , Geneva, Switzerland (2018).

  32. [32]

    A. Karch, D. Tong and C. Turner, A web of 2d dualities: Z2 gauge fields and Arf invariants, SciPost Phys. 7 (2019) 007 [arXiv:1902.05550] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    W. Ji, S.-H. Shao and X.-G. Wen, Topological transition on the conformal manifold, Phys. Rev. Res. 2 (2020) 033317 [arXiv:1909.01425] [INSPIRE].

  34. [34]

    W. Ji and X.-G. Wen, Non-invertible anomalies and mapping-class-group transformation of anomalous partition functions, Phys. Rev. Research. 1 (2019) 033054 [arXiv:1905.13279] [INSPIRE].

  35. [35]

    W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2 (2020) 033417 [arXiv:1912.13492] [INSPIRE].

  36. [36]

    A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303 (2003) 2 [quant-ph/9707021].

  37. [37]

    S.B. Bravyi and A.Y. Kitaev, Quantum codes on a lattice with boundary, quant-ph/9811052.

  38. [38]

    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189.

  39. [39]

    D.E. Taylor, Pairs of generators for matrix groups. I, The Cayley Bull. 3 (1987) 800.

  40. [40]

    D. Gaiotto and T. Johnson-Freyd, Holomorphic SCFTs with small index, arXiv:1811.00589 [INSPIRE].

  41. [41]

    R. M. Guralnick and M. Lorenz, Orders of finite groups of matrices, math/0511191.

  42. [42]

    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal, and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    T. Johnson-Freyd, The Moonshine anomaly, Commun. Math. Phys. 365 (2019) 943 [arXiv:1707.08388] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    J. Wang, X.-G. Wen and E. Witten, Symmetric gapped interfaces of SPT and set states: systematic constructions, Phys. Rev. X 8 (2018) 031048 [arXiv:1705.06728] [INSPIRE].

  45. [45]

    M.D.F. de Wild Propitius, Topological interactions in broken gauge theories, hep-th/9511195 [INSPIRE].

  46. [46]

    A. Tiwari, X. Chen, K. Shiozaki and S. Ryu, Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging, Phys. Rev. B 97 (2018) 245133 [arXiv:1710.04730] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    D. Delmastro and J. Gomis, Symmetries of abelian Chern-Simons theories and arithmetic, arXiv:1904.12884 [INSPIRE].

  48. [48]

    A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44 (2001) 131 [cond-mat/0010440] [INSPIRE].

  49. [49]

    A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry protected topological phases and cobordisms, JHEP 12 (2015) 052 [arXiv:1406.7329] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  50. [50]

    C.-T. Hsieh, Y. Nakayama and Y. Tachikawa, On fermionic minimal models, arXiv:2002.12283 [INSPIRE].

  51. [51]

    J. Kulp, Two more fermionic minimal models, arXiv:2003.04278 [INSPIRE].

  52. [52]

    N. Benjamin and Y.-H. Lin, Lessons from the Ramond sector, SciPost Phys. 9 (2020) 065 [arXiv:2005.02394] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    T. Okuda, K. Saito and S. Yokoyama, U(1) spin Chern-Simons theory and Arf invariants in two dimensions, Nucl. Phys. B 962 (2021) 115272 [arXiv:2005.03203] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. [54]

    P.B. Smith and D. Tong, Boundary RG flows for fermions and the mod 2 anomaly, SciPost Phys. 10 (2021) 010 [arXiv:2005.11314] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    J. Lou, C. Shen, C. Chen and L.-Y. Hung, A (dummy’s) guide to working with gapped boundaries via (fermion) condensation, arXiv:2007.10562 [INSPIRE].

  56. [56]

    L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, JHEP 04 (2017) 096 [arXiv:1605.01640] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    T. Senthil, D.T. Son, C. Wang and C. Xu, Duality between (2 + 1) d quantum critical points, Phys. Rept. 827 (2019) 1 [arXiv:1810.05174] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    J. Kaidi, J. Parra-Martinez and Y. Tachikawa, Topological Superconductors on Superstring Worldsheets, SciPost Phys. 9 (2020) 10 [arXiv:1911.11780] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys. 326 (2014) 459 [arXiv:1212.1692] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    T. Johnson-Freyd, On the classification of topological orders, arXiv:2003.06663 [INSPIRE].

  61. [61]

    N. Seiberg and E. Witten, Spin structures in string theory, Nucl. Phys. B 276 (1986) 272 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    R. Thorngren, Anomalies and bosonization, Commun. Math. Phys. 378 (2020) 1775 [arXiv:1810.04414] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    A. Kapustin, A. Turzillo and M. You, Spin topological field theory and fermionic matrix product states, Phys. Rev. B 98 (2018) 125101 [arXiv:1610.10075] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    R. Thorngren and Y. Wang, Fusion category symmetry I: anomaly in-flow and gapped phases, arXiv:1912.02817 [INSPIRE].

  65. [65]

    M. Guo, K. Ohmori, P. Putrov, Z. Wan and J. Wang, Fermionic finite-group gauge theories and interacting symmetric/crystal line orders via cobordisms, Commun. Math. Phys. 376 (2020) 1073 [arXiv:1812.11959] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  66. [66]

    D. Vogan, Symplectic groups, http://www-math.mit.edu/dav/symplectic.pdf.

  67. [67]

    C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Topological defect lines and renormalization group flows in two dimensions, JHEP 01 (2019) 026 [arXiv:1802.04445] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    V.G. Turaev and O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31 (1992) 865 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    M.A. Levin and X.-G. Wen, String net condensation: a physical mechanism for topological phases, Phys. Rev. B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].

  70. [70]

    A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313 (2012) 351 [arXiv:1104.5047] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    Z. Komargodski, K. Ohmori, K. Roumpedakis and S. Seifnashri, Symmetries and strings of adjoint QCD2, arXiv:2008.07567 [INSPIRE].

  72. [72]

    A. Cappelli, C. Itzykson and J.B. Zuber, Modular invariant partition functions in two dimensions, Nucl. Phys. B 280 (1987) 445.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    A. Cappelli, C. Itzykson, and J.B. Zuber, The A-D-E classification of minimal and \( {A}_1^{(1)} \) conformal invariant theories, Commun. Matrh. Phys. 113 (1987) 1.

  74. [74]

    A. Kato, Classification of modular invariant partition functions in two-dimensions, Mod. Phys. Lett. A 2 (1987) 585 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  75. [75]

    T. Gannon, The Cappelli-Itzykson-Zuber A-D-E classification, Rev. Math. Phys. 12 (2000) 739 [math/9902064] [INSPIRE].

  76. [76]

    E.P. Verlinde, Fusion rules and modular transformations in 2d conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  77. [77]

    V.B. Petkova and J.B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  78. [78]

    G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989) 177.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  79. [79]

    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  80. [80]

    A. Kapustin and N. Saulina, Surface operators in 3d topological field theory and 2d rational conformal field theory, arXiv:1012.0911 [INSPIRE].

  81. [81]

    J. Fuchs, C. Schweigert and A. Valentino, Bicategories for boundary conditions and for surface defects in 3D TFT, Commun. Math. Phys. 321 (2013) 543 [arXiv:1203.4568] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  82. [82]

    T. Gannon, The Classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys. 161 (1994) 233 [hep-th/9212060] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    T. Gannon, The Classification of SU(3) modular invariants revisited, Ann. Inst. H. Poincaré Phys. Theor. 65 (1996) 15 [hep-th/9404185] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  84. [84]

    S. Chaudhuri and J.A. Schwartz, A criterion for integrably marginal operators, Phys. Lett. B 219 (1989) 291 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  85. [85]

    S. Förste and D. Roggenkamp, Current current deformations of conformal field theories, and WZW models, JHEP 05 (2003) 071 [hep-th/0304234] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  86. [86]

    A. Kapustin, Topological field theory, higher categories, and their applications, arXiv:1004.2307 [INSPIRE].

  87. [87]

    A. Kapustin, Ground-state degeneracy for abelian anyons in the presence of gapped boundaries, Phys. Rev. B 89 (2014) 125307 [arXiv:1306.4254] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    J. Wang and X.-G. Wen, Boundary degeneracy of topological order, Phys. Rev. B 91 (2015) 125124 [arXiv:1212.4863] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    I. Cong, M. Cheng and Z. Wang, Defects between gapped boundaries in two-dimensional topological phases of matter, Phys. Rev. B 96 (2017) 195129 [arXiv:1703.03564] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. s2-22 (1980) 365.

  91. [91]

    M.F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. E.N.S. 4 (1971) 47.

  92. [92]

    D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, arXiv:1905.09566 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin Kulp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.05960

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaiotto, D., Kulp, J. Orbifold groupoids. J. High Energ. Phys. 2021, 132 (2021). https://doi.org/10.1007/JHEP02(2021)132

Download citation

Keywords

  • Anomalies in Field and String Theories
  • Discrete Symmetries
  • Gauge Symmetry
  • Global Symmetries