Aspects of Hyperscaling Violating geometries at finite cutoff

Abstract

Recently, it was proposed that a \( T\overline{T} \) deformed CFT is dual to a gravity theory in an asymptotically AdS spacetime at finite radial cutoff. Motivated by this proposal, we explore some aspects of Hyperscaling Violating geometries at finite cutoff and zero temperature. We study holographic entanglement entropy, mutual information (HMI) and entanglement wedge cross section (EWCS) for entangling regions in the shape of strips. It is observed that the HMI shows interesting features in comparison to the very small cutoff case: it is a decreasing function of the cutoff. It is finite when the distance between the two entangling regions goes to zero. The location of its phase transition also depends on the cutoff, and decreases by increasing the cutoff. On the other hand, the EWCS is a decreasing function of the cutoff. It does not show a discontinuous phase transition when the HMI undergoes a first-order phase transition. However, its concavity changes. Moreover, it is finite when the distance between the two strips goes to zero. Furthermore, it satisfies the bound EW\( \frac{I}{2} \) for all values of the cutoff.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].

  2. [2]

    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  3. [3]

    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  4. [4]

    M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].

  5. [5]

    J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].

    MATH  Article  ADS  MathSciNet  Google Scholar 

  6. [6]

    G. Bonelli, N. Doroud and M. Zhu, \( T\overline{T} \)-deformations in closed form, JHEP 06 (2018) 149 [arXiv:1804.10967] [INSPIRE].

  7. [7]

    T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  8. [8]

    D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, \( T\overline{T} \) in AdS2 and Quantum Mechanics, Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].

  9. [9]

    D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in quantum mechanics, \( T\overline{T} \), and the SYK model, Phys. Rev. D 102 (2020) 046019 [arXiv:1912.06132] [INSPIRE].

  10. [10]

    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

    MATH  Article  ADS  MathSciNet  Google Scholar 

  12. [12]

    P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    O. Aharony and T. Vaknin, The TT* deformation at large central charge, JHEP 05 (2018) 166 [arXiv:1803.00100] [INSPIRE].

    MATH  ADS  Google Scholar 

  14. [14]

    J. Cardy, \( T\overline{T} \) deformation of correlation functions, JHEP 12 (2019) 160 [arXiv:1907.03394] [INSPIRE].

  15. [15]

    S. He and H. Shu, Correlation functions, entanglement and chaos in the \( T\overline{T}/J\overline{T} \)–deformed CFTs, JHEP 02 (2020) 088 [arXiv:1907.12603] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. [16]

    S. He, J.-R. Sun and Y. Sun, The correlation function of (1, 1) and (2, 2) supersymmetric theories with \( T\overline{T} \) deformation, JHEP 04 (2020) 100 [arXiv:1912.11461] [INSPIRE].

    MATH  Article  ADS  MathSciNet  Google Scholar 

  17. [17]

    S. He and Y. Sun, Correlation functions of CFTs on a torus with a \( T\overline{T} \) deformation, Phys. Rev. D 102 (2020) 026023 [arXiv:2004.07486] [INSPIRE].

  18. [18]

    S. He, Y. Sun and Y.-X. Zhang, \( T\overline{T} \)-flow effects on torus partition functions, arXiv:2011.02902 [INSPIRE].

  19. [19]

    W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  20. [20]

    B. Chen, L. Chen and P.-X. Hao, Entanglement entropy in \( T\overline{T} \)-deformed CFT, Phys. Rev. D 98 (2018) 086025 [arXiv:1807.08293] [INSPIRE].

  21. [21]

    C. Park, Holographic Entanglement Entropy in Cutoff AdS, Int. J. Mod. Phys. A 33 (2019) 1850226 [arXiv:1812.00545] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Banerjee, A. Bhattacharyya and S. Chakraborty, Entanglement Entropy for TT deformed CFT in general dimensions, Nucl. Phys. B 948 (2019) 114775 [arXiv:1904.00716] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    C. Murdia, Y. Nomura, P. Rath and N. Salzetta, Comments on holographic entanglement entropy in TT deformed conformal field theories, Phys. Rev. D 100 (2019) 026011 [arXiv:1904.04408] [INSPIRE].

  24. [24]

    H.-S. Jeong, K.-Y. Kim and M. Nishida, Entanglement and Rényi entropy of multiple intervals in \( T\overline{T} \)-deformed CFT and holography, Phys. Rev. D 100 (2019) 106015 [arXiv:1906.03894] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  25. [25]

    S. Grieninger, Entanglement entropy and \( T\overline{T} \) deformations beyond antipodal points from holography, JHEP 11 (2019) 171 [arXiv:1908.10372] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  26. [26]

    W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira and V. Shyam, Quantum corrections to finite radius holography and holographic entanglement entropy, JHEP 05 (2020) 006 [arXiv:1909.11402] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  27. [27]

    M. Asrat and J. Kudler-Flam, \( T\overline{T} \), the entanglement wedge cross section and the breakdown of the split property, Phys. Rev. D 102 (2020) 045009 [arXiv:2005.08972] [INSPIRE].

  28. [28]

    C. Paul, Quantum entanglement measures from Hyperscaling violating geometries with finite radial cut off at general d, θ from the emergent global symmetry, arXiv:2012.01895 [INSPIRE].

  29. [29]

    M. Alishahiha and A. Faraji Astaneh, Complexity of Hyperscaling Violating Theories at Finite Cutoff, Phys. Rev. D 100 (2019) 086004 [arXiv:1905.10740] [INSPIRE].

  30. [30]

    J. Cardy, \( T\overline{T} \) deformations of non-Lorentz invariant field theories, arXiv:1809.07849 [INSPIRE].

  31. [31]

    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  32. [32]

    M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys. 931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  34. [34]

    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  35. [35]

    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  36. [36]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  37. [37]

    H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  38. [38]

    H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

  39. [39]

    H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav. 24 (2007) 1293 [gr-qc/0609126] [INSPIRE].

  40. [40]

    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  41. [41]

    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    E. Tonni, Holographic entanglement entropy: near horizon geometry and disconnected regions, JHEP 05 (2011) 004 [arXiv:1011.0166] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  43. [43]

    B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].

  44. [44]

    W. Fischler, A. Kundu and S. Kundu, Holographic Mutual Information at Finite Temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M.R. Mohammadi Mozaffar, A. Mollabashi and F. Omidi, Holographic Mutual Information for Singular Surfaces, JHEP 12 (2015) 082 [arXiv:1511.00244] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  46. [46]

    B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys. 43 (2002) 4286 [quant-ph/0202044].

  47. [47]

    T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  49. [49]

    P. Liu, Y. Ling, C. Niu and J.-P. Wu, Entanglement of Purification in Holographic Systems, JHEP 09 (2019) 071 [arXiv:1902.02243] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  50. [50]

    K. Babaei Velni, M.R. Mohammadi Mozaffar and M.H. Vahidinia, Some Aspects of Entanglement Wedge Cross-Section, JHEP 05 (2019) 200 [arXiv:1903.08490] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  51. [51]

    S. Bagchi and A.K. Pati, Monogamy, polygamy and other properties of entanglement of purification, Phys. Rev. A 91 (2015) 042323 [arXiv:1502.01272].

  52. [52]

    J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev. D 99 (2019) 106014 [arXiv:1808.00446] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  53. [53]

    K. Tamaoka, Entanglement Wedge Cross Section from the Dual Density Matrix, Phys. Rev. Lett. 122 (2019) 141601 [arXiv:1809.09109] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, arXiv:1905.00577 [INSPIRE].

  55. [55]

    Y. Kusuki and K. Tamaoka, Dynamics of Entanglement Wedge Cross Section from Conformal Field Theories, Phys. Lett. B 814 (2021) 136105 [arXiv:1907.06646] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  56. [56]

    M. Ghodrati, X.-M. Kuang, B. Wang, C.-Y. Zhang and Y.-T. Zhou, The connection between holographic entanglement and complexity of purification, JHEP 09 (2019) 009 [arXiv:1902.02475] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  57. [57]

    N. Bao and I.F. Halpern, Holographic Inequalities and Entanglement of Purification, JHEP 03 (2018) 006 [arXiv:1710.07643] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  58. [58]

    H. Hirai, K. Tamaoka and T. Yokoya, Towards Entanglement of Purification for Conformal Field Theories, PTEP 2018 (2018) 063B03 [arXiv:1803.10539] [INSPIRE].

  59. [59]

    N. Bao and I.F. Halpern, Conditional and Multipartite Entanglements of Purification and Holography, Phys. Rev. D 99 (2019) 046010 [arXiv:1805.00476] [INSPIRE].

  60. [60]

    K. Umemoto and Y. Zhou, Entanglement of Purification for Multipartite States and its Holographic Dual, JHEP 10 (2018) 152 [arXiv:1805.02625] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  61. [61]

    R.-Q. Yang, C.-Y. Zhang and W.-M. Li, Holographic entanglement of purification for thermofield double states and thermal quench, JHEP 01 (2019) 114 [arXiv:1810.00420] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  62. [62]

    C.A. Agón, J. De Boer and J.F. Pedraza, Geometric Aspects of Holographic Bit Threads, JHEP 05 (2019) 075 [arXiv:1811.08879] [INSPIRE].

  63. [63]

    N. Bao, A. Chatwin-Davies and G.N. Remmen, Entanglement of Purification and Multiboundary Wormhole Geometries, JHEP 02 (2019) 110 [arXiv:1811.01983] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  64. [64]

    P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, Holographic Entanglement of Purification from Conformal Field Theories, Phys. Rev. Lett. 122 (2019) 111601 [arXiv:1812.05268] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  66. [66]

    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    MATH  ADS  Article  Google Scholar 

  67. [67]

    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].

  68. [68]

    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  70. [70]

    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].

  71. [71]

    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  72. [72]

    E. Kiritsis and Y. Matsuo, Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes, JHEP 12 (2015) 076 [arXiv:1508.02494] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  73. [73]

    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

  74. [74]

    D.S. Fisher and D.A. Huse, Ordered Phase of Short-Range Ising Spin-Glasses, Phys. Rev. Lett. 56 (1986) 1601 [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    MATH  Article  Google Scholar 

  76. [76]

    M. Alishahiha and H. Yavartanoo, On Holography with Hyperscaling Violation, JHEP 11 (2012) 034 [arXiv:1208.6197] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    M.R. Tanhayi, Universal terms of holographic entanglement entropy in theories with hyperscaling violation, Phys. Rev. D 97 (2018) 106008 [arXiv:1711.10526] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  78. [78]

    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  79. [79]

    M. Alishahiha, A.F. Astaneh, P. Fonda and F. Omidi, Entanglement Entropy for Singular Surfaces in Hyperscaling violating Theories, JHEP 09 (2015) 172 [arXiv:1507.05897] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  80. [80]

    M.R. Tanhayi, Thermalization of Mutual Information in Hyperscaling Violating Backgrounds, JHEP 03 (2016) 202 [arXiv:1512.04104] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  81. [81]

    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

  82. [82]

    A.C. Wall, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

    MathSciNet  MATH  ADS  Article  Google Scholar 

  83. [83]

    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality and holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farzad Omidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.00305

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoeini-Moghaddam, S., Omidi, F. & Paul, C. Aspects of Hyperscaling Violating geometries at finite cutoff. J. High Energ. Phys. 2021, 121 (2021). https://doi.org/10.1007/JHEP02(2021)121

Download citation

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence