Most general theory of 3d gravity: covariant phase space, dual diffeomorphisms, and more

Abstract

We show that the phase space of three-dimensional gravity contains two layers of dualities: between diffeomorphisms and a notion of “dual diffeomorphisms” on the one hand, and between first order curvature and torsion on the other hand. This is most elegantly revealed and understood when studying the most general Lorentz-invariant first order theory in connection and triad variables, described by the so-called Mielke-Baekler Lagrangian. By analyzing the quasi-local symmetries of this theory in the covariant phase space formalism, we show that in each sector of the torsion/curvature duality there exists a well-defined notion of dual diffeomorphism, which furthermore follows uniquely from the Sugawara construction. Together with the usual diffeomorphisms, these duals form at finite distance, without any boundary conditions, and for any sign of the cosmological constant, a centreless double Virasoro algebra which in the flat case reduces to the BMS3 algebra. These algebras can then be centrally-extended via the twisted Sugawara construction. This shows that the celebrated results about asymptotic symmetry algebras are actually generic features of three-dimensional gravity at any finite distance. They are however only revealed when working in first order connection and triad variables, and a priori inaccessible from Chern-Simons theory. As a bonus, we study the second order equations of motion of the Mielke-Baekler model, as well as the on-shell Lagrangian. This reveals the duality between Riemannian metric and teleparallel gravity, and a new candidate theory for three-dimensional massive gravity which we call teleparallel topologically massive gravity.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Carlip, Quantum gravity in 2 + 1 dimensions, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2003) [DOI] [INSPIRE].

  2. [2]

    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2 + 1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity, and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

  5. [5]

    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  6. [6]

    S. Carlip, Six ways to quantize (2 + 1)-dimensional gravity, in 5th Canadian Conference on General Relativity and Relativistic Astrophysics (5CCGRRA), pp. 0215–234 (1993) [gr-qc/9305020] [INSPIRE].

  7. [7]

    S. Carlip and J.E. Nelson, Equivalent quantizations of (2 + 1)-dimensional gravity, Phys. Lett. B 324 (1994) 299 [gr-qc/9311007] [INSPIRE].

  8. [8]

    S. Carlip and J.E. Nelson, Comparative quantizations of (2 + 1)-dimensional gravity, Phys. Rev. D 51 (1995) 5643 [gr-qc/9411031] [INSPIRE].

  9. [9]

    S. Alexandrov, M. Geiller and K. Noui, Spin Foams and Canonical Quantization, SIGMA 8 (2012) 055 [arXiv:1112.1961] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  10. [10]

    C. Goeller, E.R. Livine and A. Riello, Non-Perturbative 3D Quantum Gravity: Quantum Boundary States and Exact Partition Function, Gen. Rel. Grav. 52 (2020) 24 [arXiv:1912.01968] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    E. Witten, Topology Changing Amplitudes in (2 + 1)-Dimensional Gravity, Nucl. Phys. B 323 (1989) 113 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    H. Ooguri, Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge, Nucl. Phys. B 382 (1992) 276 [hep-th/9112072] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    S. Carlip and R. Cosgrove, Topology change in (2 + 1)-dimensional gravity, J. Math. Phys. 35 (1994) 5477 [gr-qc/9406006] [INSPIRE].

  14. [14]

    D. Oriti, The Group field theory approach to quantum gravity, gr-qc/0607032 [INSPIRE].

  15. [15]

    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

  17. [17]

    J.M. Maldacena, TASI 2003 lectures on AdS/CFT, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, pp. 155–203 (2003) [hep-th/0309246] [INSPIRE].

  18. [18]

    B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity, Class. Quant. Grav. 35 (2018) 13LT01 [arXiv:1803.02759] [INSPIRE].

  19. [19]

    B. Dittrich, C. Goeller, E. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity I — Convergence of multiple approaches and examples of Ponzano-Regge statistical duals, Nucl. Phys. B 938 (2019) 807 [arXiv:1710.04202] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  20. [20]

    B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity II — From coherent quantum boundaries to BMS3 characters, Nucl. Phys. B 938 (2019) 878 [arXiv:1710.04237] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  21. [21]

    C. Goeller, Quasi-Local 3D Quantum Gravity: Exact Amplitude and Holography, Ph.D. Thesis, Lyon, Ecole Normale Superieure, Perimeter Inst. Theor. Phys. (2019) [arXiv:2005.09985] [INSPIRE].

  22. [22]

    S.K. Asante, B. Dittrich and F. Hopfmueller, Holographic formulation of 3D metric gravity with finite boundaries, Universe 5 (2019) 181 [arXiv:1905.10931] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    E. Witten, Gauge Theories, Vertex Models and Quantum Groups, Nucl. Phys. B 330 (1990) 285 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    F.A. Bais, N.M. Muller and B.J. Schroers, Quantum group symmetry and particle scattering in (2 + 1)-dimensional quantum gravity, Nucl. Phys. B 640 (2002) 3 [hep-th/0205021] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    K. Noui, Three Dimensional Loop Quantum Gravity: Particles and the Quantum Double, J. Math. Phys. 47 (2006) 102501 [gr-qc/0612144] [INSPIRE].

  27. [27]

    C. Meusburger and K. Noui, The Hilbert space of 3d gravity: quantum group symmetries and observables, Adv. Theor. Math. Phys. 14 (2010) 1651 [arXiv:0809.2875] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    A. Ballesteros, F.J. Herranz and C. Meusburger, Three-dimensional gravity and Drinfel’d doubles: spacetimes and symmetries from quantum deformations, Phys. Lett. B 687 (2010) 375 [arXiv:1001.4228] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Dupuis, L. Freidel, F. Girelli, A. Osumanu and J. Rennert, On the origin of the quantum group symmetry in 3d quantum gravity, arXiv:2006.10105 [INSPIRE].

  30. [30]

    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].

  31. [31]

    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Deser and R. Jackiw, ‘Selfduality’ of Topologically Massive Gauge Theories, Phys. Lett. B 139 (1984) 371 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-Dreibein Gravity: A Two-Frame-Field Model of 3D Massive Gravity, Phys. Rev. Lett. 111 (2013) 111102 [Erratum ibid. 111 (2013) 259902] [arXiv:1307.2774] [INSPIRE].

  36. [36]

    S. Alexandrov and C. Deffayet, On Partially Massless Theory in 3 Dimensions, JCAP 03 (2015) 043 [arXiv:1410.2897] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    E. Bergshoeff, W. Merbis, A.J. Routh and P.K. Townsend, The Third Way to 3D Gravity, Int. J. Mod. Phys. D 24 (2015) 1544015 [arXiv:1506.05949] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  38. [38]

    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Extended massive gravity in three dimensions, JHEP 08 (2014) 115 [arXiv:1405.6213] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Minimal Massive 3D Gravity, Class. Quant. Grav. 31 (2014) 145008 [arXiv:1404.2867] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    E.A. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh and P.K. Townsend, Chern-Simons-like Gravity Theories, Lect. Notes Phys. 892 (2015) 181 [arXiv:1402.1688] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    W. Merbis, Chern-Simons-like Theories of Gravity, Ph.D. Thesis, University of Groningen (2014) [arXiv:1411.6888] [INSPIRE].

  42. [42]

    M. Geiller and K. Noui, A remarkably simple theory of 3d massive gravity, JHEP 04 (2019) 091 [arXiv:1812.01018] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    M. Geiller and K. Noui, Metric formulation of the simple theory of 3d massive gravity, Phys. Rev. D 100 (2019) 064066 [arXiv:1905.04390] [INSPIRE].

  44. [44]

    A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].

  45. [45]

    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].

  46. [46]

    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].

  47. [47]

    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].

  48. [48]

    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Super-BMS3 invariant boundary theory from three-dimensional flat supergravity, JHEP 01 (2017) 029 [arXiv:1510.08824] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  49. [49]

    G. Barnich, H.A. Gonzalez, A. Maloney and B. Oblak, One-loop partition function of three-dimensional flat gravity, JHEP 04 (2015) 178 [arXiv:1502.06185] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    B. Oblak, BMS Particles in Three Dimensions, Ph.D. Thesis, Université Libre de Bruxelles (2016) [DOI] [arXiv:1610.08526] [INSPIRE].

  51. [51]

    A. Garbarz and M. Leston, Quantization of BMS3 orbits: a perturbative approach, Nucl. Phys. B 906 (2016) 133 [arXiv:1507.00339] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  53. [53]

    A. Bagchi, A. Saha and Zodinmawia, BMS Characters and Modular Invariance, JHEP 07 (2019) 138 [arXiv:1902.07066] [INSPIRE].

  54. [54]

    D. Grumiller and M. Riegler, Most general AdS3 boundary conditions, JHEP 10 (2016) 023 [arXiv:1608.01308] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    D. Grumiller, W. Merbis and M. Riegler, Most general flat space boundary conditions in three-dimensional Einstein gravity, Class. Quant. Grav. 34 (2017) 184001 [arXiv:1704.07419] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    E.W. Mielke and P. Baekler, Topological gauge model of gravity with torsion, Phys. Lett. A 156 (1991) 399 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    P. Baekler, E.W. Mielke and F.W. Hehl, Dynamical symmetries in topological 3-D gravity with torsion, Nuovo Cim. B 107 (1992) 91 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    S.L. Cacciatori, M.M. Caldarelli, A. Giacomini, D. Klemm and D.S. Mansi, Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity, J. Geom. Phys. 56 (2006) 2523 [hep-th/0507200] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    A. Giacomini, R. Troncoso and S. Willison, Three-dimensional supergravity reloaded, Class. Quant. Grav. 24 (2007) 2845 [hep-th/0610077] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    M. Blagojevic and B. Cvetkovic, Canonical structure of 3-D gravity with torsion, gr-qc/0412134 [INSPIRE].

  61. [61]

    M. Blagojevic and B. Cvetkovic, Black hole entropy in 3-D gravity with torsion, Class. Quant. Grav. 23 (2006) 4781 [gr-qc/0601006] [INSPIRE].

  62. [62]

    M. Blagojevic and B. Cvetkovic, Black hole entropy from the boundary conformal structure in 3D gravity with torsion, JHEP 10 (2006) 005 [gr-qc/0606086] [INSPIRE].

  63. [63]

    M. Blagojevic and B. Cvetkovic, Asymptotic charges in 3-D gravity with torsion, J. Phys. Conf. Ser. 33 (2006) 248 [gr-qc/0511162] [INSPIRE].

  64. [64]

    M. Blagojevic, B. Cvetkovic, O. Mišković and R. Olea, Holography in 3D AdS gravity with torsion, JHEP 05 (2013) 103 [arXiv:1301.1237] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    B. Cvetković and D. Simić, Near-horizon geometry with torsion, Phys. Rev. D 99 (2019) 024032 [arXiv:1809.00555] [INSPIRE].

  66. [66]

    D. Klemm and G. Tagliabue, The CFT dual of AdS gravity with torsion, Class. Quant. Grav. 25 (2008) 035011 [arXiv:0705.3320] [INSPIRE].

  67. [67]

    C.-H. Wei and B. Ning, Quasi-local Energy in 3D Gravity with Torsion, arXiv:1807.08736 [INSPIRE].

  68. [68]

    J.R.B. Peleteiro and C.E. Valcárcel, Spin-3 fields in Mielke-Baekler gravity, Class. Quant. Grav. 37 (2020) 185010 [arXiv:2003.02627] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  69. [69]

    D.V. Artamonov, Introduction to finite W-algebras, arXiv:1607.01697.

  70. [70]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11 (2020) 026 [arXiv:2006.12527] [INSPIRE].

  71. [71]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP 11 (2020) 027 [arXiv:2007.03563] [INSPIRE].

  72. [72]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints, JHEP 01 (2021) 100 [arXiv:2007.12635] [INSPIRE].

  73. [73]

    X. Chen, A. Tiwari and S. Ryu, Bulk-boundary correspondence in (3 + 1)-dimensional topological phases, Phys. Rev. B 94 (2016) 045113 [Addendum ibid. 94 (2016) 079903] [arXiv:1509.04266] [INSPIRE].

  74. [74]

    X. Chen, A. Tiwari, C. Nayak and S. Ryu, Gauging (3 + 1)-dimensional topological phases: an approach from surface theories, Phys. Rev. B 96 (2017) 165112 [arXiv:1706.00560] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    X. Wen, S. Matsuura and S. Ryu, Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories, Phys. Rev. B 93 (2016) 245140 [arXiv:1603.08534] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    C. Delcamp, B. Dittrich and A. Riello, On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity, JHEP 11 (2016) 102 [arXiv:1609.04806] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    R. Aldrovandi and J.G. Pereira, Teleparallel Gravity: An Introduction, vol. 173, Springer (2013) [DOI] [INSPIRE].

  78. [78]

    C. Delcamp, L. Freidel and F. Girelli, Dual loop quantizations of 3d gravity, arXiv:1803.03246 [INSPIRE].

  79. [79]

    M. Dupuis, F. Girelli, A. Osumanu and W. Wieland, First-order formulation of teleparallel gravity and dual loop gravity, Class. Quant. Grav. 37 (2020) 085023 [arXiv:1906.02801] [INSPIRE].

  80. [80]

    R. Banerjee and D. Roy, Trivial symmetries in a 3D topological torsion model of gravity, J. Phys. Conf. Ser. 405 (2012) 012028 [arXiv:1212.4238] [INSPIRE].

  81. [81]

    R. Banerjee, S. Gangopadhyay, P. Mukherjee and D. Roy, Symmetries of topological gravity with torsion in the hamiltonian and lagrangian formalisms, JHEP 02 (2010) 075 [arXiv:0912.1472] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    R. Banerjee and D. Roy, Poincaré gauge symmetries, hamiltonian symmetries and trivial gauge transformations, Phys. Rev. D 84 (2011) 124034 [arXiv:1110.1720] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].

  84. [84]

    G. Barnich, A. Gomberoff and H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D 87 (2013) 124032 [arXiv:1210.0731] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    G. Compère, L. Donnay, P.-H. Lambert and W. Schulgin, Liouville theory beyond the cosmological horizon, JHEP 03 (2015) 158 [arXiv:1411.7873] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  86. [86]

    G. Compère, P. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  87. [87]

    H. Adami, M.M. Sheikh-Jabbari, V. Taghiloo, H. Yavartanoo and C. Zwikel, Symmetries at null boundaries: two and three dimensional gravity cases, JHEP 10 (2020) 107 [arXiv:2007.12759] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  88. [88]

    A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  89. [89]

    D. Harlow and J.-Q. Wu, Covariant phase space with boundaries, JHEP 10 (2020) 146 [arXiv:1906.08616] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. [90]

    M. Geiller and P. Jai-akson, Extended actions, dynamics of edge modes, and entanglement entropy, JHEP 09 (2020) 134 [arXiv:1912.06025] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  91. [91]

    V. Chandrasekaran and A.J. Speranza, Anomalies in gravitational charge algebras of null boundaries and black hole entropy, JHEP 01 (2021) 137 [arXiv:2009.10739] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    D. Grumiller, M.M. Sheikh-Jabbari, C. Troessaert and R. Wutte, Interpolating Between Asymptotic and Near Horizon Symmetries, JHEP 03 (2020) 035 [arXiv:1911.04503] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  93. [93]

    T. Jacobson and A. Mohd, Black hole entropy and Lorentz-diffeomorphism Noether charge, Phys. Rev. D 92 (2015) 124010 [arXiv:1507.01054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  94. [94]

    K. Prabhu, The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav. 34 (2017) 035011 [arXiv:1511.00388] [INSPIRE].

  95. [95]

    E. De Paoli and S. Speziale, A gauge-invariant symplectic potential for tetrad general relativity, JHEP 07 (2018) 040 [arXiv:1804.09685] [INSPIRE].

  96. [96]

    R. Oliveri and S. Speziale, Boundary effects in General Relativity with tetrad variables, Gen. Rel. Grav. 52 (2020) 83 [arXiv:1912.01016] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  97. [97]

    R. Oliveri and S. Speziale, A note on dual gravitational charges, JHEP 12 (2020) 079 [arXiv:2010.01111] [INSPIRE].

    ADS  Article  Google Scholar 

  98. [98]

    H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev. D 99 (2019) 024013 [arXiv:1812.01641] [INSPIRE].

  99. [99]

    H. Godazgar, M. Godazgar and C.N. Pope, Tower of subleading dual BMS charges, JHEP 03 (2019) 057 [arXiv:1812.06935] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  100. [100]

    H. Godazgar, M. Godazgar and C.N. Pope, Dual gravitational charges and soft theorems, JHEP 10 (2019) 123 [arXiv:1908.01164] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  101. [101]

    H. Godazgar, M. Godazgar and M.J. Perry, Hamiltonian derivation of dual gravitational charges, JHEP 09 (2020) 084 [arXiv:2007.07144] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  102. [102]

    H. Godazgar, M. Godazgar and M.J. Perry, Asymptotic gravitational charges, Phys. Rev. Lett. 125 (2020) 101301 [arXiv:2007.01257] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  103. [103]

    U. Kol and M. Porrati, Properties of Dual Supertranslation Charges in Asymptotically Flat Spacetimes, Phys. Rev. D 100 (2019) 046019 [arXiv:1907.00990] [INSPIRE].

  104. [104]

    U. Kol, Subleading BMS Charges and The Lorentz Group, arXiv:2011.06008 [INSPIRE].

  105. [105]

    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  106. [106]

    R. Fareghbal and A. Naseh, Flat-Space Energy-Momentum Tensor from BMS/GCA Correspondence, JHEP 03 (2014) 005 [arXiv:1312.2109] [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    G. Barnich and H.A. Gonzalez, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity, JHEP 05 (2013) 016 [arXiv:1303.1075] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  108. [108]

    S. Carlip, The dynamics of supertranslations and superrotations in 2 + 1 dimensions, Class. Quant. Grav. 35 (2018) 014001 [arXiv:1608.05088] [INSPIRE].

  109. [109]

    M. Geiller and C. Goeller, Dual diffeomorphisms and finite distance asymptotic symmetries in 3d gravity, arXiv:2012.05263 [INSPIRE].

  110. [110]

    S. Carlip, Exact Quantum Scattering in (2 + 1)-Dimensional Gravity, Nucl. Phys. B 324 (1989) 106 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  111. [111]

    P. de Sousa Gerbert, On spin and (quantum) gravity in (2 + 1)-dimensions, Nucl. Phys. B 346 (1990) 440 [INSPIRE].

  112. [112]

    G. ’t Hooft, The Evolution of gravitating point particles in (2 + 1)-dimensions, Class. Quant. Grav. 10 (1993) 1023 [INSPIRE].

  113. [113]

    G. ’t Hooft, Canonical quantization of gravitating point particles in (2 + 1)-dimensions, Class. Quant. Grav. 10 (1993) 1653 [gr-qc/9305008] [INSPIRE].

  114. [114]

    H.-J. Matschull and M. Welling, Quantum mechanics of a point particle in (2 + 1)-dimensional gravity, Class. Quant. Grav. 15 (1998) 2981 [gr-qc/9708054] [INSPIRE].

  115. [115]

    H.-J. Matschull, The Phase space structure of multi particle models in 2+1 gravity, Class. Quant. Grav. 18 (2001) 3497 [gr-qc/0103084] [INSPIRE].

  116. [116]

    E. Buffenoir and K. Noui, Unfashionable observations about three-dimensional gravity, gr-qc/0305079 [INSPIRE].

  117. [117]

    B. Dittrich and M. Geiller, Quantum gravity kinematics from extended TQFTs, New J. Phys. 19 (2017) 013003 [arXiv:1604.05195] [INSPIRE].

  118. [118]

    K. Noui and A. Perez, Three-dimensional loop quantum gravity: Coupling to point particles, Class. Quant. Grav. 22 (2005) 4489 [gr-qc/0402111] [INSPIRE].

  119. [119]

    B.J. Schroers, Lessons from (2 + 1)-dimensional quantum gravity, PoS QG-PH (2007) 035 [arXiv:0710.5844] [INSPIRE].

  120. [120]

    L. Freidel, C. Goeller and E. Livine, The quantum gravity disk: Discrete current algebra, to appear (2020).

  121. [121]

    K. Noui and A. Perez, Dynamics of loop quantum gravity and spin foam models in three-dimensions, in 3rd International Symposium on Quantum Theory and Symmetries, pp. 648–654 (2004) [DOI] [gr-qc/0402112] [INSPIRE].

  122. [122]

    L. Freidel, A Ponzano-Regge model of Lorentzian 3-dimensional gravity, Nucl. Phys. B Proc. Suppl. 88 (2000) 237 [gr-qc/0102098] [INSPIRE].

  123. [123]

    L. Freidel and D. Louapre, Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles, Class. Quant. Grav. 21 (2004) 5685 [hep-th/0401076] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  124. [124]

    J.W. Barrett and I. Naish-Guzman, The Ponzano-Regge model, Class. Quant. Grav. 26 (2009) 155014 [arXiv:0803.3319] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  125. [125]

    S. Mizoguchi and T. Tada, Three-dimensional gravity from the Turaev-Viro invariant, Phys. Rev. Lett. 68 (1992) 1795 [hep-th/9110057] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  126. [126]

    V.G. Turaev and O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31 (1992) 865 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  127. [127]

    D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  128. [128]

    T.G. Mertens, The Schwarzian theory — origins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  129. [129]

    A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D Gravity and Chern-Simons, JHEP 02 (2020) 033 [arXiv:1802.07746] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  130. [130]

    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].

  131. [131]

    P. Concha, N. Merino, O. Mišković, E. Rodríguez, P. Salgado-ReboLledó and O. Valdivia, Asymptotic symmetries of three-dimensional Chern-Simons gravity for the Maxwell algebra, JHEP 10 (2018) 079 [arXiv:1805.08834] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  132. [132]

    H. Adami, P. Concha, E. Rodriguez and H.R. Safari, Asymptotic symmetries of Maxwell Chern-Simons gravity with torsion, Eur. Phys. J. C 80 (2020) 967 [arXiv:2005.07690] [INSPIRE].

    ADS  Article  Google Scholar 

  133. [133]

    A. Corichi, I. Rubalcava and T. Vukasinac, Hamiltonian and Noether charges in first order gravity, Gen. Rel. Grav. 46 (2014) 1813 [arXiv:1312.7828] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  134. [134]

    A. Corichi, I. Rubalcava-García and T. Vukašinac, Actions, topological terms and boundaries in first-order gravity: A review, Int. J. Mod. Phys. D 25 (2016) 1630011 [arXiv:1604.07764] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christophe Goeller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.09873

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geiller, M., Goeller, C. & Merino, N. Most general theory of 3d gravity: covariant phase space, dual diffeomorphisms, and more. J. High Energ. Phys. 2021, 120 (2021). https://doi.org/10.1007/JHEP02(2021)120

Download citation

Keywords

  • Gauge Symmetry
  • Classical Theories of Gravity
  • Duality in Gauge Field Theories
  • Chern-Simons Theories