Area law of connected correlation function in higher dimensional conformal field theory

Abstract

We present a new area law which is associated with the correlator of OPE blocks in higher dimensional conformal field theories (CFTs). The area law shows similar behaviour as black hole entropy or geometric entanglement entropy. It includes a leading term which is proportional to the area of the entanglement surface, and a logarithmic subleading term with degree q. We extract the UV cutoff independent coefficients and discuss various properties of the coefficients.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  3. [3]

    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    H. Araki, Relative Entropy of States of Von Neumann Algebras, Publ. Res. Inst. Math. Sci. Kyoto 1976 (1976) 809.

    MATH  Google Scholar 

  7. [7]

    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy - a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    J. Long, Logarithmic behaviour of connected correlation function in CFT, arXiv:2001.05129 [INSPIRE].

  10. [10]

    J. Long, Correlation function of modular Hamiltonians, JHEP 11 (2019) 163 [arXiv:1907.00646] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    J. Long, Correlation function with the insertion of zero modes of modular Hamiltonians, JHEP 01 (2020) 173 [arXiv:1911.11487] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim. 2S2 (1971) 1363 [Lett. Nuovo Cim. 2 (1971) 1363] [INSPIRE].

  13. [13]

    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D 5 (1972) 3102 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. [16]

    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].

  17. [17]

    R. Haag, Local quantum physics: fields, particles, algebras, Springer, Berlin, Germany (1992).

    Google Scholar 

  18. [18]

    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    M. Hogervorst, H. Osborn and S. Rychkov, Diagonal Limit for Conformal Blocks in d Dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117 [arXiv:1308.1083] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    J. Lee, A. Lewkowycz, E. Perlmutter and B.R. Safdi, Rényi entropy, stationarity, and entanglement of the conformal scalar, JHEP 03 (2015) 075 [arXiv:1407.7816] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Elsevier/Academic Press, Amsterdam, Seventh edition (2007).

  29. [29]

    G. N. Watson, Notes on Generating Functions of Polynomials: (3) Polynomials of Legendre and Gegenbauer, J. London Math. Soc. 8 (1933) 269.

    MathSciNet  Google Scholar 

  30. [30]

    A. Selberg, Bemerkninger om et multipelt integral, Norsk. Mat. Tidsskr. 24 (1944) 71.

    Google Scholar 

  31. [31]

    P. Forrester and S. Warnaar, The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008) 489.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiang Long.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.15380

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, J. Area law of connected correlation function in higher dimensional conformal field theory. J. High Energ. Phys. 2021, 110 (2021). https://doi.org/10.1007/JHEP02(2021)110

Download citation

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory