Delaying the inevitable: tidal disruption in microstate geometries

Abstract

Microstate geometries in string theory replace the black-hole horizon with a smooth geometric “cap” at the horizon scale. In geometries constructed using superstratum technology, this cap has the somewhat surprising property that induces very large tidal deformations on infalling observers that are far away from it. We find that this large-distance amplification of the tidal effects is also present in horizonless microstate geometries constructed as bubbling solutions, but can be tamed by suitably arranging the bubbles to reduce the strength of some of the gravitational multipole moments. However, despite this taming, these tidal effects still become large at a significant distance from the microstructure. This result suggests that an observer will not fall unharmed into the structure replacing the black hole horizon.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP 02 (2018) 014 [arXiv:1711.10474] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    P. Heidmann, Four-center bubbled BPS solutions with a Gibbons-Hawking base, JHEP 10 (2017) 009 [arXiv:1703.10095] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    I. Bena, P. Heidmann and P.F. Ramirez, A systematic construction of microstate geometries with low angular momentum, JHEP 10 (2017) 217 [arXiv:1709.02812] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    J. Avila, P.F. Ramirez and A. Ruiperez, One Thousand and One Bubbles, JHEP 01 (2018) 041 [arXiv:1709.03985] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP 03 (2019) 095 [arXiv:1812.08761] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    P. Heidmann and N.P. Warner, Superstratum Symbiosis, JHEP 09 (2019) 059 [arXiv:1903.07631] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    P. Heidmann, D.R. Mayerson, R. Walker and N.P. Warner, Holomorphic Waves of Black Hole Microstructure, JHEP 02 (2020) 192 [arXiv:1910.10714] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    N.P. Warner, Lectures on Microstate Geometries, arXiv:1912.13108 [INSPIRE].

  12. [12]

    S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    P. Kraus and S.D. Mathur, Nature abhors a horizon, Int. J. Mod. Phys. D 24 (2015) 1543003 [arXiv:1505.05078] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    I. Bena, D.R. Mayerson, A. Puhm and B. Vercnocke, Tunneling into Microstate Geometries: Quantum Effects Stop Gravitational Collapse, JHEP 07 (2016) 031 [arXiv:1512.05376] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP 02 (2018) 122 [arXiv:1710.09006] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP 04 (2019) 126 [arXiv:1812.05110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    S. Giusto, E. Moscato and R. Russo, AdS3 holography for 1/4 and 1/8 BPS geometries, JHEP 11 (2015) 004 [arXiv:1507.00945] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Galliani, S. Giusto, E. Moscato and R. Russo, Correlators at large c without information loss, JHEP 09 (2016) 065 [arXiv:1606.01119] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    I. Bena, P. Heidmann and D. Turton, AdS2 holography: mind the cap, JHEP 12 (2018) 028 [arXiv:1806.02834] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J.B. Gutowski, D. Martelli and H.S. Reall, All Supersymmetric solutions of minimal supergravity in six- dimensions, Class. Quant. Grav. 20 (2003) 5049 [hep-th/0306235] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    A.W. Peet, TASI lectures on black holes in string theory, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity 353 8, 2000, DOI [hep-th/0008241] [INSPIRE].

  24. [24]

    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    B.D. Chowdhury and D.R. Mayerson, Multi-centered D1-D5 solutions at finite B-moduli, JHEP 02 (2014) 043 [arXiv:1305.0831] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    I. Bena and P. Kraus, Microscopic description of black rings in AdS / CFT, JHEP 12 (2004) 070 [hep-th/0408186] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW String, JHEP 06 (2017) 137 [arXiv:1703.10171] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP 05 (2016) 064 [arXiv:1601.05805] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    I. Bena, N. Bobev and N.P. Warner, Spectral Flow, and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    I. Bena and D.R. Mayerson, Multipole Ratios: A New Window into Black Holes, Phys. Rev. Lett. 125 (2020) 22 [arXiv:2006.10750] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. [36]

    G. Bossard and S. Lüst, Microstate geometries at a generic point in moduli space, Gen. Rel. Grav. 51 (2019) 112 [arXiv:1905.12012] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    S.D. Mathur and D. Turton, Comments on black holes I: The possibility of complementarity, JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony Houppe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.13939

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bena, I., Houppe, A. & Warner, N.P. Delaying the inevitable: tidal disruption in microstate geometries. J. High Energ. Phys. 2021, 103 (2021). https://doi.org/10.1007/JHEP02(2021)103

Download citation

Keywords

  • Black Holes in String Theory
  • Supergravity Models