Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: scalar field

Abstract

We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equations in curvilinear coordinates. After factorizing the density operator with group theoretical methods, we obtain the exact form of the phase space distribution function as a formal series in thermal vorticity through an iterative method and we calculate thermal expectation values by means of analytic continuation techniques. We separately discuss the cases of pure rotation and pure acceleration and derive analytic results for the stress-energy tensor of the massless field. The expressions found agree with the exact analytic solutions obtained by solving the field equation in suitable curvilinear coordinates for the two cases at stake and already — or implicitly — known in literature. In order to extract finite values for the pure acceleration case we introduce the concept of analytic distillation of a complex function. For the massless field, the obtained expressions of the currents are polynomials in the acceleration/temperature ratios which vanish at 2π, in full accordance with the Unruh effect.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Becattini, Covariant statistical mechanics and the stress-energy tensor, Phys. Rev. Lett. 108 (2012) 244502 [arXiv:1201.5278] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    F. Becattini, L. Bucciantini, E. Grossi and L. Tinti, Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid, Eur. Phys. J. C 75 (2015) 191 [arXiv:1403.6265] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    F. Becattini and E. Grossi, Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration, Phys. Rev. D 92 (2015) 045037 [arXiv:1505.07760] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. Buzzegoli and F. Becattini, General thermodynamic equilibrium with axial chemical potential for the free Dirac field, JHEP 12 (2018) 002 [arXiv:1807.02071] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    F. Becattini, M. Buzzegoli and E. Grossi, Reworking the Zubarev’s approach to non-equilibrium quantum statistical mechanics, Particles 2 (2019) 197 [arXiv:1902.01089] [INSPIRE].

    Article  Google Scholar 

  6. [6]

    M. Gransee, N. Pinamonti and R. Verch, KMS-like Properties of Local Equilibrium States in Quantum Field Theory, J. Geom. Phys. 117 (2017) 15 [arXiv:1508.05585] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    R. Panerai, Global equilibrium and local thermodynamics in stationary spacetimes, Phys. Rev. D 93 (2016) 104021 [arXiv:1511.05963] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    K. Fredenhagen, T.-P. Hack and N. Pinamonti, Thermodynamics of Quantum Fields in Nonstationary Spacetimes, in Particles, Strings and the Early Universe: The Structure of Matter and Space-Time, J. Haller and M. Grefe eds., DESY, Hamburg Germany (2018), pp. 363–378 [arXiv:1809.08557] [INSPIRE].

    Google Scholar 

  9. [9]

    STAR collaboration, Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62 [arXiv:1701.06657] [INSPIRE].

  10. [10]

    D.N. Zubarev, A.V. Prozorkevich and S.A. Smolyanskii, Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics, Theor. Math. Phys. 40 (1979) 821.

    MathSciNet  Article  Google Scholar 

  11. [11]

    C.G. van Weert, Maximum entropy principle and relativistic hydrodynamics, Ann. Phys. 140 (1982) 133.

  12. [12]

    M. Hongo, Path-integral formula for local thermal equilibrium, Annals Phys. 383 (2017) 1 [arXiv:1611.07074] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    A. Harutyunyan, A. Sedrakian and D.H. Rischke, Relativistic Dissipative Fluid Dynamics from the Non-Equilibrium Statistical Operator, Particles 1 (2018) 155 [arXiv:1804.08267] [INSPIRE].

    Google Scholar 

  14. [14]

    G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, Unruh effect for fermions from the Zubarev density operator, Phys. Rev. D 99 (2019) 071901 [arXiv:1903.09697] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, Thermodynamics of accelerated fermion gases and their instability at the Unruh temperature, Phys. Rev. D 100 (2019) 125009 [arXiv:1906.03529] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    G.Y. Prokhorov, O.V. Teryaev and V.I. Zakharov, Unruh effect universality: emergent conical geometry from density operator, JHEP 03 (2020) 137 [arXiv:1911.04545] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    P. Kovtun and A. Shukla, Kubo formulas for thermodynamic transport coefficients, JHEP 10 (2018) 007 [arXiv:1806.05774] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    F. Becattini, Thermodynamic equilibrium with acceleration and the Unruh effect, Phys. Rev. D 97 (2018) 085013 [arXiv:1712.08031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    F. Becattini and D. Rindori, Extensivity, entropy current, area law and Unruh effect, Phys. Rev. D 99 (2019) 125011 [arXiv:1903.05422] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    V.E. Ambrus, Quantum non-equilibrium effects in rigidly-rotating thermal states, Phys. Lett. B 771 (2017) 151 [arXiv:1704.02933] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    S.D. Groot, W. van Leeuwen and C. van Weert, Relativistic Kinetic Theory, North Holland, Amsterdam The Netherlands (1980).

  23. [23]

    F. Becattini and L. Tinti, Thermodynamical inequivalence of quantum stress-energy and spin tensors, Phys. Rev. D 84 (2011) 025013 [arXiv:1101.5251] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, The hydrodynamic gradient expansion in linear response theory, arXiv:2007.05524 [INSPIRE].

  25. [25]

    A. Erdelyi, Asymptotic expansions, Dover Publications (2010).

  26. [26]

    D. Zagier, The Mellin transform and related analytic techniques, in Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists, Springer (2006), pp. 305–323 and online pdf version at http://people.mpim-bonn.mpg.de/zagier/files/tex/MellinTransform/fulltext.pdf.

  27. [27]

    D. Dorigoni and A. Kleinschmidt, Resurgent expansion of Lambert series and iterated Eisenstein integrals, Commun. Num. Theor. Phys. 15 (2021) 1 [arXiv:2001.11035] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. [28]

    J.I. Korsbakken and J.M. Leinaas, The Fulling-Unruh effect in general stationary accelerated frames, Phys. Rev. D 70 (2004) 084016 [hep-th/0406080] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Buzzegoli, E. Grossi and F. Becattini, General equilibrium second-order hydrodynamic coefficients for free quantum fields, JHEP 10 (2017) 091 [Erratum JHEP 07 (2018) 119] [arXiv:1704.02808] [INSPIRE].

  30. [30]

    J.S. Dowker, Quantum Field Theory on a Cone, J. Phys. A 10 (1977) 115 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    L.D. Landau and E.M. Lifshitz, Statistical physics. Part 1, in Course of Theoretical Physics. Volume 5, third edition, Pergamon (1969) [INSPIRE].

  32. [32]

    A. Vilenkin, Quantum field theory at finite temperature in a rotating system, Phys. Rev. D 21 (1980) 2260 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    V.E. Ambrus, Dirac fermions on rotating space-times, Ph.D. Thesis, University of Sheffield, School of Mathematics and Statistics, Sheffield U.K. (2014).

  34. [34]

    N.E. Nörlund, Vorlesungen über Differenzenrechnung, in Die Grundlehren der Mathematischen Wissenschaften 13, Springer (1924).

  35. [35]

    A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev and N.M. Queen, Integrals and Series. Volume 1. Elementary functions, first edition, CRC (1998).

  36. [36]

    Y.L. Luke, The special functions and their approximations, in Mathematics in Science and Engineering 53–1, Academic Press (1969).

  37. [37]

    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition, Academic Press, Amsterdam The Netherlands (2007) [https://doi.org/10.1016/C2009-0-22516-5].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Becattini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.08249

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becattini, F., Buzzegoli, M. & Palermo, A. Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: scalar field. J. High Energ. Phys. 2021, 101 (2021). https://doi.org/10.1007/JHEP02(2021)101

Download citation

Keywords

  • Space-Time Symmetries
  • Thermal Field Theory
  • Boundary Quantum Field Theory