DK I = 0, \( D\overline{K} \) I = 0, 1 scattering and the \( {D}_{s0}^{\ast } \)(2317) from lattice QCD


Elastic scattering amplitudes for I = 0 DK and I = 0, 1 \( D\overline{K} \) are computed in S, P and D partial waves using lattice QCD with light-quark masses corresponding to mπ = 239 MeV and mπ = 391 MeV. The S-waves contain interesting features including a near-threshold JP = 0+ bound state in I = 0 DK, corresponding to the \( {D}_{s0}^{\ast } \)(2317), with an effect that is clearly visible above threshold, and suggestions of a 0+ virtual bound state in I = 0 \( D\overline{K} \). The S-wave I = 1 \( D\overline{K} \) amplitude is found to be weakly repulsive. The computed finite-volume spectra also contain a deeply-bound D* vector resonance, but negligibly small P -wave DK interactions are observed in the energy region considered; the P and D-wave \( D\overline{K} \) amplitudes are also small. There is some evidence of 1+ and 2+ resonances in I = 0 DK at higher energies.

A preprint version of the article is available at ArXiv.


  1. [1]

    BaBar collaboration, Observation of a narrow meson decaying to \( {D}_s^{+}{\pi}^0 \) at a mass of 2.32 GeV/c2 , Phys. Rev. Lett. 90 (2003) 242001 [hep-ex/0304021] [INSPIRE].

  2. [2]

    S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32 (1985) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu and S.-L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80 (2017) 076201 [arXiv:1609.08928] [INSPIRE].

  4. [4]

    CLEO collaboration, Observation of a narrow resonance of mass 2.46-GeV/c**2 in the D*(s)+ pi0 final state, and confirmation of the D*(sJ)(2317), AIP Conf. Proc. 698 (2004) 497 [hep-ex/0305017] [INSPIRE].

  5. [5]

    D. Johnson, B\( D\overline{D}h \) decays: a new (virtual) laboratory for exotic particle searches at LHCb, CERN LHC Seminar (2020).

  6. [6]

    LHCb collaboration, A model-independent study of resonant structure in B+D+DK+ decays, Phys. Rev. Lett. 125 (2020) 242001 [arXiv:2009.00025] [INSPIRE].

  7. [7]

    LHCb collaboration, Amplitude analysis of the B+D+DK+ decay, Phys. Rev. D 102 (2020) 112003 [arXiv:2009.00026] [INSPIRE].

  8. [8]

    G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas and D.J. Wilson, Coupled-Channel Dπ, Dη and \( {D}_s\overline{K} \) scattering from lattice QCD, JHEP 10 (2016) 011 [arXiv:1607.07093] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    Hadron Spectrum collaboration, Excited heavy mesons from lattice QCD, AIP Conf. Proc. 1735 (2016) 030007 [INSPIRE].

  10. [10]

    G. Cheung, Spectroscopy of exotic charm mesons from lattice QCD, Ph.D. thesis, Cambridge University, Cambridge U.K. (2019).

  11. [11]

    L. Liu, K. Orginos, F.-K. Guo, C. Hanhart and U.-G. Meissner, Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the \( {D}_{s0}^{\ast } \)(2317), Phys. Rev. D 87 (2013) 014508 [arXiv:1208.4535] [INSPIRE].

  12. [12]

    D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek and R.M. Woloshyn, \( {D}_{s0}^{\ast } \)(2317) Meson and D-Meson-Kaon Scattering from Lattice QCD, Phys. Rev. Lett. 111 (2013) 222001 [arXiv:1308.3175] [INSPIRE].

  13. [13]

    C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek and R.M. Woloshyn, Ds mesons with DK and D*K scattering near threshold, Phys. Rev. D 90 (2014) 034510 [arXiv:1403.8103] [INSPIRE].

  14. [14]

    G.S. Bali, S. Collins, A. Cox and A. Schäfer, Masses and decay constants of the \( {D}_{s0}^{\ast } \)(2317) and Ds1(2460) from Nf = 2 lattice QCD close to the physical point, Phys. Rev. D 96 (2017) 074501 [arXiv:1706.01247] [INSPIRE].

  15. [15]

    C. Alexandrou, J. Berlin, J. Finkenrath, T. Leontiou and M. Wagner, Tetraquark interpolating fields in a lattice QCD investigation of the \( {D}_{s0}^{\ast } \)(2317) meson, Phys. Rev. D 101 (2020) 034502 [arXiv:1911.08435] [INSPIRE].

  16. [16]

    R.C. Johnson, Angular momentum on a lattice, Phys. Lett. B 114 (1982) 147 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    D.C. Moore and G.T. Fleming, Angular momentum on the lattice: the case of non-zero linear momentum, Phys. Rev. D 73 (2006) 014504 [Erratum ibid. 74 (2006) 079905] [hep-lat/0507018] [INSPIRE].

  18. [18]

    C. Michael, Adjoint sources in lattice gauge theory, Nucl. Phys. B 259 (1985) 58 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M. Lüscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl. Phys. B 339 (1990) 222 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    J.J. Dudek, R.G. Edwards, N. Mathur and D.G. Richards, Charmonium excited state spectrum in lattice QCD, Phys. Rev. D 77 (2008) 034501 [arXiv:0707.4162] [INSPIRE].

  21. [21]

    J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards and C.E. Thomas, Toward the excited meson spectrum of dynamical QCD, Phys. Rev. D 82 (2010) 034508 [arXiv:1004.4930] [INSPIRE].

  22. [22]

    Hadron Spectrum collaboration, Energy dependence of the ρ resonance in ππ elastic scattering from lattice QCD, Phys. Rev. D 87 (2013) 034505 [Erratum ibid. 90 (2014) 099902] [arXiv:1212.0830] [INSPIRE].

  23. [23]

    D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards and C.E. Thomas, Coupled ππ, \( K\overline{K} \) scattering in P-wave and the ρ resonance from lattice QCD, Phys. Rev. D 92 (2015) 094502 [arXiv:1507.02599] [INSPIRE].

  24. [24]

    Hadron Spectrum collaboration, Tetraquark operators in lattice QCD and exotic flavour states in the charm sector, JHEP 11 (2017) 033 [arXiv:1709.01417] [INSPIRE].

  25. [25]

    C.E. Thomas, R.G. Edwards and J.J. Dudek, Helicity operators for mesons in flight on the lattice, Phys. Rev. D 85 (2012) 014507 [arXiv:1107.1930] [INSPIRE].

  26. [26]

    J.J. Dudek, R.G. Edwards and C.E. Thomas, S and D-wave phase shifts in isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 86 (2012) 034031 [arXiv:1203.6041] [INSPIRE].

  27. [27]

    M. Padmanath, C.B. Lang and S. Prelovsek, X(3872) and Y(4140) using diquark-antidiquark operators with lattice QCD, Phys. Rev. D 92 (2015) 034501 [arXiv:1503.03257] [INSPIRE].

  28. [28]

    A.J. Woss, C.E. Thomas, J.J. Dudek, R.G. Edwards and D.J. Wilson, b1 resonance in coupled πω, πϕ scattering from lattice QCD, Phys. Rev. D 100 (2019) 054506 [arXiv:1904.04136] [INSPIRE].

  29. [29]

    Hadron Spectrum collaboration, A novel quark-field creation operator construction for hadronic physics in lattice QCD, Phys. Rev. D 80 (2009) 054506 [arXiv:0905.2160] [INSPIRE].

  30. [30]

    R.G. Edwards, B. Joo and H.-W. Lin, Tuning for three-flavors of anisotropic clover fermions with stout-link smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].

  31. [31]

    Hadron Spectrum collaboration, First results from 2 + 1 dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].

  32. [32]

    Hadron Spectrum collaboration, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07 (2012) 126 [arXiv:1204.5425] [INSPIRE].

  33. [33]

    Hadron Spectrum collaboration, Excited and exotic charmonium, Ds and D meson spectra for two light quark masses from lattice QCD, JHEP 12 (2016) 089 [arXiv:1610.01073] [INSPIRE].

  34. [34]

    D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards and C.E. Thomas, The quark-mass dependence of elastic πK scattering from QCD, Phys. Rev. Lett. 123 (2019) 042002 [arXiv:1904.03188] [INSPIRE].

  35. [35]

    R.G. Edwards, J.J. Dudek, D.G. Richards and S.J. Wallace, Excited state baryon spectroscopy from lattice QCD, Phys. Rev. D 84 (2011) 074508 [arXiv:1104.5152] [INSPIRE].

  36. [36]

    D.J. Wilson, J.J. Dudek, R.G. Edwards and C.E. Thomas, Resonances in coupled πK, ηK scattering from lattice QCD, Phys. Rev. D 91 (2015) 054008 [arXiv:1411.2004] [INSPIRE].

  37. [37]

    Hadron Spectrum collaboration, An a0 resonance in strongly coupled πη, \( K\overline{K} \) scattering from lattice QCD, Phys. Rev. D 93 (2016) 094506 [arXiv:1602.05122] [INSPIRE].

  38. [38]

    M.T. Hansen and S.R. Sharpe, Lattice QCD and three-particle decays of resonances, Ann. Rev. Nucl. Part. Sci. 69 (2019) 65 [arXiv:1901.00483] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].

  40. [40]

    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    K. Rummukainen and S.A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice, Nucl. Phys. B 450 (1995) 397 [hep-lat/9503028] [INSPIRE].

  43. [43]

    C.h. Kim, C.T. Sachrajda and S.R. Sharpe, Finite-volume effects for two-hadron states in moving frames, Nucl. Phys. B 727 (2005) 218 [hep-lat/0507006] [INSPIRE].

  44. [44]

    N.H. Christ, C. Kim and T. Yamazaki, Finite volume corrections to the two-particle decay of states with non-zero momentum, Phys. Rev. D 72 (2005) 114506 [hep-lat/0507009] [INSPIRE].

  45. [45]

    Z. Fu, Rummukainen-Gottlieb’s formula on two-particle system with different mass, Phys. Rev. D 85 (2012) 014506 [arXiv:1110.0319] [INSPIRE].

  46. [46]

    L. Leskovec and S. Prelovsek, Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD, Phys. Rev. D 85 (2012) 114507 [arXiv:1202.2145] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    R.A. Briceno, Two-particle multichannel systems in a finite volume with arbitrary spin, Phys. Rev. D 89 (2014) 074507 [arXiv:1401.3312] [INSPIRE].

  48. [48]

    R.A. Briceno, J.J. Dudek and R.D. Young, Scattering processes and resonances from lattice QCD, Rev. Mod. Phys. 90 (2018) 025001 [arXiv:1706.06223] [INSPIRE].

  49. [49]

    G.F. Chew and S. Mandelstam, Theory of low-energy pion pion interactions, Phys. Rev. 119 (1960) 467 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas and L. Liu, Excited spectroscopy of charmed mesons from lattice QCD, JHEP 05 (2013) 021 [arXiv:1301.7670] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  52. [52]

    S. Weinberg, Evidence that the deuteron is not an elementary particle, Phys. Rev. 137 (1965) B672 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    A. Martínez Torres, E. Oset, S. Prelovsek and A. Ramos, Reanalysis of lattice QCD spectra leading to the \( {D}_{s0}^{\ast } \)(2317) and \( {D}_{s1}^{\ast } \)(2460), JHEP 05 (2015) 153 [arXiv:1412.1706] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller and A. Rusetsky, Towards a precise determination of the scattering amplitudes of the charmed and light-flavor pseudoscalar mesons, Eur. Phys. J. C 79 (2019) 13 [arXiv:1811.05585] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    A. Sitenko, Lectures in scattering theory, Pergamon Press, Oxford, U.K. (1971).

    Google Scholar 

  56. [56]

    J.R. Taylor, Scattering theory: the quantum theory of nonrelativistic collisions. Dover Publications, U.S.A. (2006).

    Google Scholar 

  57. [57]

    T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue et al., Are two nucleons bound in lattice QCD for heavy quark masses? Consistency check with Lüscher’s finite volume formula, Phys. Rev. D 96 (2017) 034521 [arXiv:1703.07210] [INSPIRE].

  58. [58]

    M. Albaladejo, P. Fernandez-Soler, F.-K. Guo and J. Nieves, Two-pole structure of the \( {D}_0^{\ast } \)(2400), Phys. Lett. B 767 (2017) 465 [arXiv:1610.06727] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    M.-L. Du et al., Towards a new paradigm for heavy-light meson spectroscopy, Phys. Rev. D 98 (2018) 094018 [arXiv:1712.07957] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    A. Francis, R.J. Hudspith, R. Lewis and K. Maltman, Lattice prediction for deeply bound doubly heavy tetraquarks, Phys. Rev. Lett. 118 (2017) 142001 [arXiv:1607.05214] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    A. Francis, R.J. Hudspith, R. Lewis and K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD, Phys. Rev. D 99 (2019) 054505 [arXiv:1810.10550] [INSPIRE].

  62. [62]

    P. Junnarkar, N. Mathur and M. Padmanath, Study of doubly heavy tetraquarks in lattice QCD, Phys. Rev. D 99 (2019) 034507 [arXiv:1810.12285] [INSPIRE].

  63. [63]

    L. Leskovec, S. Meinel, M. Pflaumer and M. Wagner, Lattice QCD investigation of a doubly-bottom \( \overline{b}\overline{b} ud \) tetraquark with quantum numbers I(JP) = 0(1+), Phys. Rev. D 100 (2019) 014503 [arXiv:1904.04197] [INSPIRE].

  64. [64]

    T.A. Kaeding, Tables of SU(3) isoscalar factors, Atom. Data Nucl. Data Tabl. 61 (1995) 233 [nucl-th/9502037] [INSPIRE].

  65. [65]

    U.-G. Meißner, Two-pole structures in QCD: facts, not fantasy!, Symmetry 12 (2020) 981 [arXiv:2005.06909] [INSPIRE].

    Article  Google Scholar 

  66. [66]

    SciDAC, LHPC, UKQCD collaboration, The Chroma software system for lattice QCD, Nucl. Phys. B Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

  67. [67]

    M.A. Clark, R. Babich, K. Barros, R.C. Brower and C. Rebbi, Solving lattice QCD systems of equations using mixed precision solvers on GPUs, Comput. Phys. Commun. 181 (2010) 1517 [arXiv:0911.3191] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    R. Babich, M.A. Clark and B. Joo, Parallelizing the QUDA library for multi-GPU calculations in lattice quantum chromodynamics, inthe proceedings of the SC 10 (Supercomputing 2010), November 13–19, New Orleans, U.S.A. (2010) [arXiv:1011.0024] [INSPIRE].

  69. [69]

    B. Joó et al., Lattice QCD on Intel(R) Xeon Phi Coprocessors, Lect. Notes Comput. Sci. 7905 (2013) 40.

    Article  Google Scholar 

  70. [70]

    J.C. Osborn et al., Multigrid solver for clover fermions, PoS(LATTICE2010)037 [arXiv:1011.2775] [INSPIRE].

  71. [71]

    R. Babichy et al., Adaptive multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett. 105 (2010) 201602 [arXiv:1005.3043] [INSPIRE].

Download references

Author information




Corresponding authors

Correspondence to Christopher E. Thomas or David J. Wilson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.06432

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheung, G.K.C., Thomas, C.E., Wilson, D.J. et al. DK I = 0, \( D\overline{K} \) I = 0, 1 scattering and the \( {D}_{s0}^{\ast } \)(2317) from lattice QCD. J. High Energ. Phys. 2021, 100 (2021).

Download citation


  • Lattice field theory simulation
  • QCD Phenomenology