Composite dark matter from strongly-interacting chiral dynamics

Abstract

A class of chiral gauge theories is studied with accidentally-stable pseudo Nambu-Goldstone bosons playing the role of dark matter (DM). The gauge group contains a vector-like dark color factor that confines at energies larger than the electroweak scale, and a U(1)D factor that remains weakly coupled and is spontaneously broken. All new scales are generated dynamically, including the DM mass, and the IR dynamics is fully calculable. We analyze minimal models of this kind with dark fermions transforming as non-trivial vector-like representations of the Standard Model (SM) gauge group. In realistic models, the DM candidate is a SM singlet and comes along with charged partners that can be discovered at high-energy colliders. The phenomenology of the lowest-lying new states is thus characterized by correlated predictions for astrophysical observations and laboratory experiments.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nuclear Physics B 243 (1984) 125.

    ADS  Article  Google Scholar 

  3. [3]

    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    L.E. Ibáñez and G.G. Ross, SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs, Phys. Lett. B 110 (1982) 215 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of grand unified models with softly broken supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [INSPIRE].

  9. [9]

    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    Z. Berezhiani, Mirror world and its cosmological consequences, Int. J. Mod. Phys. A 19 (2004) 3775 [hep-ph/0312335] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  14. [14]

    P. Ciarcelluti, Cosmology with mirror dark matter, Int. J. Mod. Phys. D 19 (2010) 2151 [arXiv:1102.5530] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  15. [15]

    R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, Int. J. Mod. Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Cosmological signatures of a mirror twin Higgs, JHEP 09 (2018) 163 [arXiv:1803.03263] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    C. Kilic, T. Okui and R. Sundrum, Vectorlike confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  18. [18]

    C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173.

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys. B 175 (1980) 197 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Preskill, Subgroup alignment in hypercolor theories, Nucl. Phys. B 177 (1981) 21 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    Y. Bai and R.J. Hill, Weakly interacting stable pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev. D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    K. Harigaya and Y. Nomura, Light chiral dark sector, Phys. Rev. D 94 (2016) 035013 [arXiv:1603.03430] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    R.T. Co, K. Harigaya and Y. Nomura, Chiral dark sector, Phys. Rev. Lett. 118 (2017) 101801 [arXiv:1610.03848] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    M.P. Hertzberg and M. Sandora, Dark matter and naturalness, JHEP 12 (2019) 037 [arXiv:1908.09841] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    A. Falkowski, J. Juknevich and J. Shelton, Dark matter through the neutrino portal, arXiv:0908.1790 [INSPIRE].

  29. [29]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark matter as a weakly coupled dark baryon, JHEP 10 (2017) 210 [arXiv:1707.05380] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  30. [30]

    R. Contino, A. Mitridate, A. Podo and M. Redi, Gluequark dark matter, JHEP 02 (2019) 187 [arXiv:1811.06975] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    P. Batra, B.A. Dobrescu and D. Spivak, Anomaly-free sets of fermions, J. Math. Phys. 47 (2006) 082301 [hep-ph/0510181] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    D.B. Costa, B.A. Dobrescu and P.J. Fox, General solution to the U(1) anomaly equations, Phys. Rev. Lett. 123 (2019) 151601 [arXiv:1905.13729] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    B.C. Allanach, B. Gripaios and J. Tooby-Smith, Geometric general solution to the U(1) anomaly equations, JHEP 05 (2020) 065 [arXiv:1912.04804] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    J.M. Berryman, A. de Gouvêa, D. Hernández and K.J. Kelly, Imperfect mirror copies of the Standard Model, Phys. Rev. D 94 (2016) 035009 [arXiv:1605.03610] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    T. DeGrand, Lattice methods for students at a formal TASI, in Theoretical advanced study institute in elementary particle physics: the many dimensions of quantum field theory, (2019) [arXiv:1907.02988] [INSPIRE].

  36. [36]

    M. Lüscher, Chiral gauge theories revisited, Subnucl. Ser. 38 (2002) 41 [hep-th/0102028] [INSPIRE].

    Google Scholar 

  37. [37]

    S. Raby, S. Dimopoulos and L. Susskind, Tumbling gauge theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    F.A. Bais and J.M. Frere, Composite vector fields and tumbling gauge theories, Phys. Lett. B 98 (1981) 431 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    R. Contino, A. Podo and F. Revello, work in progress.

  40. [40]

    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    D.A. Kosower, Symmetry breaking patterns in pseudoreal and real gauge theories, Phys. Lett. B 144 (1984) 215 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    M.L. Perl, E.R. Lee and D. Loomba, Searches for fractionally charged particles, Ann. Rev. Nucl. Part. Sci. 59 (2009) 47 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    Y. Bai, J. Berger, J. Osborne and B.A. Stefanek, Phenomenology of strongly coupled chiral gauge theories, JHEP 11 (2016) 153 [arXiv:1605.07183] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    Y. Bai and R.J. Hill, Weakly interacting stable pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    R. Contino, The Higgs as a composite Nambu-Goldstone boson, in Theoretical advanced study institute in elementary particle physics: physics of the large and the small, World Scientific, Singapore (2011), pg. 235 [arXiv:1005.4269] [INSPIRE].

  46. [46]

    OBELIX collaboration, \( \overline{n}p \) annihilation in flight in two mesons in the momentum range between 50 and 400 MeV/c with OBELIX, Nucl. Phys. B Proc. Suppl. 56 (1997) 227.

  47. [47]

    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    A. Berlin, D. Hooper and G. Krnjaic, PeV-scale dark matter as a thermal relic of a decoupled sector, Phys. Lett. B 760 (2016) 106 [arXiv:1602.08490] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-in dark matter with displaced signatures at colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    A. Berlin, D. Hooper and G. Krnjaic, Thermal dark matter from a highly decoupled sector, Phys. Rev. D 94 (2016) 095019 [arXiv:1609.02555] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    M. Cirelli, Y. Gouttenoire, K. Petraki and F. Sala, Homeopathic dark matter, or how diluted heavy substances produce high energy cosmic rays, JCAP 02 (2019) 014 [arXiv:1811.03608] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    V. Poulin, J. Lesgourgues and P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy, JCAP 03 (2017) 043 [arXiv:1610.10051] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the cosmic microwave background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  56. [56]

    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  57. [57]

    J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 02 (2016) 037 [arXiv:1507.04351] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    M.A. Buen-Abad, M. Schmaltz, J. Lesgourgues and T. Brinckmann, Interacting dark sector and precision cosmology, JCAP 01 (2018) 008 [arXiv:1708.09406] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    Z. Chacko, Y. Cui, S. Hong, T. Okui and Y. Tsai, Partially acoustic dark matter, interacting dark radiation, and large scale structure, JHEP 12 (2016) 108 [arXiv:1609.03569] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    P. Ko, N. Nagata and Y. Tang, Hidden charged dark matter and chiral dark radiation, Phys. Lett. B 773 (2017) 513 [arXiv:1706.05605] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z′-mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    M. Escudero, S.J. Witte and D. Hooper, Hidden sector dark matter and the galactic center gamma-ray excess: a closer look, JCAP 11 (2017) 042 [arXiv:1709.07002] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    J.A. Evans, S. Gori and J. Shelton, Looking for the WIMP next door, JHEP 02 (2018) 100 [arXiv:1712.03974] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    B.J. Kavanagh, P. Panci and R. Ziegler, Faint light from dark matter: classifying and constraining dark matter-photon effective operators, JHEP 04 (2019) 089 [arXiv:1810.00033] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  66. [66]

    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  67. [67]

    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  68. [68]

    LZ collaboration, LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].

  69. [69]

    A.D. Dolgov, S.L. Dubovsky, G.I. Rubtsov and I.I. Tkachev, Constraints on millicharged particles from Planck data, Phys. Rev. D 88 (2013) 117701 [arXiv:1310.2376] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    R. de Putter, O. Doré, J. Gleyzes, D. Green and J. Meyers, Dark matter interactions, helium, and the cosmic microwave background, Phys. Rev. Lett. 122 (2019) 041301 [arXiv:1805.11616] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    D. Dunsky, L.J. Hall and K. Harigaya, CHAMP cosmic rays, JCAP 07 (2019) 015 [arXiv:1812.11116] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    S. Profumo, F.S. Queiroz, J. Silk and C. Siqueira, Searching for secluded dark matter with H.E.S.S., Fermi-LAT, and Planck, JCAP 03 (2018) 010 [arXiv:1711.03133] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    Fermi-LAT collaboration, Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  75. [75]

    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    LSST Dark Matter Group collaboration, Probing the fundamental nature of dark matter with the Large Synoptic Survey Telescope, arXiv:1902.01055 [INSPIRE].

  77. [77]

    CTA collaboration, Pre-construction estimates of the Cherenkov Telescope Array sensitivity to a dark matter signal from the galactic centre, JCAP 01 (2021) 057 [arXiv:2007.16129] [INSPIRE].

  78. [78]

    D. Barducci, S. De Curtis, M. Redi and A. Tesi, An almost elementary Higgs: theory and practice, JHEP 08 (2018) 017 [arXiv:1805.12578] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    G.D. Kribs, A. Martin, B. Ostdiek and T. Tong, Dark mesons at the LHC, JHEP 07 (2019) 133 [arXiv:1809.10184] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    CMS collaboration, Search for a narrow resonance decaying to a pair of muons in proton-proton collisions at 13 TeV, Tech. Rep. CMS-PAS-EXO-19-018, CERN, Geneva, Switzerland (2019).

  82. [82]

    C.-W. Chiang, G. Cottin, Y. Du, K. Fuyuto and M.J. Ramsey-Musolf, Collider probes of real triplet scalar dark matter, JHEP 01 (2021) 198 [arXiv:2003.07867] [INSPIRE].

    Article  Google Scholar 

  83. [83]

    CMS collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb1 of data at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-EXO-19-019, CERN, Geneva, Switzerland (2019).

  84. [84]

    ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].

  85. [85]

    CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].

  86. [86]

    CMS collaboration, Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 112014 [arXiv:1808.03124] [INSPIRE].

  87. [87]

    ATLAS collaboration, Search for new resonances in mass distributions of jet pairs using 139 fb1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 03 (2020) 145 [arXiv:1910.08447] [INSPIRE].

  88. [88]

    ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J. C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].

  89. [89]

    ATLAS collaboration, Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 072001 [arXiv:1912.08479] [INSPIRE].

  90. [90]

    CMS collaboration, Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2019) 154 [arXiv:1812.04066] [INSPIRE].

  91. [91]

    CMS collaboration, Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum, JHEP 10 (2019) 244 [arXiv:1908.04722] [INSPIRE].

  92. [92]

    ATLAS collaboration, Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 801 (2020) 135114 [arXiv:1907.10037] [INSPIRE].

  93. [93]

    ATLAS collaboration, Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 012001 [arXiv:1808.03057] [INSPIRE].

  94. [94]

    ATLAS collaboration, Search for long-lived particles produced in pp collisions at \( \sqrt{s} \) = 13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer, Phys. Rev. D 99 (2019) 052005 [arXiv:1811.07370] [INSPIRE].

  95. [95]

    ATLAS collaboration, Search for long-lived neutral particles in pp collisions at \( \sqrt{s} \) = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter, Eur. Phys. J. C 79 (2019) 481 [arXiv:1902.03094] [INSPIRE].

  96. [96]

    CMS collaboration, Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 797 (2019) 134876 [arXiv:1906.06441] [INSPIRE].

  97. [97]

    G. Salam and A. Weiler, Collider reach (β), http://collider-reach.web.cern.ch/collider-reach/.

  98. [98]

    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    T. Bhattacharya and P. Roy, Unitarity limit on the gaugino-gravitino mass ratio, Phys. Lett. B 206 (1988) 655 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandro Podo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.10607

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contino, R., Podo, A. & Revello, F. Composite dark matter from strongly-interacting chiral dynamics. J. High Energ. Phys. 2021, 91 (2021). https://doi.org/10.1007/JHEP02(2021)091

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Technicolor and Composite Models