Lepton-mediated electroweak baryogenesis, gravitational waves and the 4τ final state at the collider

Abstract

An electroweak baryogenesis (EWBG) mechanism mediated by τ lepton transport is proposed. We extend the Standard Model with a real singlet scalar S to trigger the strong first-order electroweak phase transition (SFOEWPT), and with a set of leptophilic dimension-5 operators to provide sufficient CP violating source. We demonstrate this model is able to generate the observed baryon asymmetry of the universe. This scenario is experimentally testable via either the SFOEWPT gravitational wave signals at the next-generation space-based detectors, or the pph*SS → 4τ process (where h* is an off-shell Higgs) at the hadron colliders. A detailed collider simulation shows that a considerable fraction of parameter space can be probed at the HL-LHC, while almost the whole parameter space allowed by EWBG can be reached by the 27 TeV HE-LHC.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  2. [2]

    A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Sov. Phys. Usp. 34 (1991) 392 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    V. Kuzmin, Cp violation and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 335.

    ADS  Google Scholar 

  4. [4]

    A.Y. Ignatiev, N.V. Krasnikov, V.A. Kuzmin and A.N. Tavkhelidze, Universal CP Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe, Phys. Lett. B 76 (1978) 436 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The Universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013] [INSPIRE].

  6. [6]

    D. Bödeker and W. Buchmüller, Baryogenesis from the weak scale to the GUT scale, arXiv:2009.07294 [INSPIRE].

  7. [7]

    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J.M. Cline, Baryogenesis, in Les Houches Summer School — Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, (2006) [hep-ph/0609145] [INSPIRE].

  9. [9]

    M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].

  10. [10]

    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Prog. Phys. 82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].

  12. [12]

    M. Joyce, T. Prokopec and N. Turok, Electroweak baryogenesis from a classical force, Phys. Rev. Lett. 75 (1995) 1695 [Erratum ibid. 75 (1995) 3375] [hep-ph/9408339] [INSPIRE].

  13. [13]

    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 2: The Classical regime, Phys. Rev. D 53 (1996) 2958 [hep-ph/9410282] [INSPIRE].

  14. [14]

    L. Fromme and S.J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049 [hep-ph/0604159] [INSPIRE].

  15. [15]

    M. Jiang, L. Bian, W. Huang and J. Shu, Impact of a complex singlet: Electroweak baryogenesis and dark matter, Phys. Rev. D 93 (2016) 065032 [arXiv:1502.07574] [INSPIRE].

  16. [16]

    S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Baryon Asymmetry from a Composite Higgs Boson, Phys. Rev. Lett. 121 (2018) 131801 [arXiv:1803.08546] [INSPIRE].

  17. [17]

    W. Chao and Y. Liu, CP violation in the top-assisted electroweak baryogenesis, arXiv:1910.09303 [INSPIRE].

  18. [18]

    S.A.R. Ellis, S. Ipek and G. White, Electroweak Baryogenesis from Temperature-Varying Couplings, JHEP 08 (2019) 002 [arXiv:1905.11994] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    S. De Curtis, L. Delle Rose and G. Panico, Composite Dynamics in the Early Universe, JHEP 12 (2019) 149 [arXiv:1909.07894] [INSPIRE].

  20. [20]

    J.M. Cline and K. Kainulainen, Electroweak baryogenesis at high bubble wall velocities, Phys. Rev. D 101 (2020) 063525 [arXiv:2001.00568] [INSPIRE].

  21. [21]

    K.-P. Xie, L. Bian and Y. Wu, Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations, JHEP 12 (2020) 047 [arXiv:2005.13552] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    T. Modak and E. Senaha, Electroweak baryogenesis via bottom transport, Phys. Rev. D 99 (2019) 115022 [arXiv:1811.08088] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    T. Modak and E. Senaha, Probing Electroweak Baryogenesis induced by extra bottom Yukawa coupling via EDMs and collider signatures, JHEP 11 (2020) 025 [arXiv:2005.09928] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak Phase Transition and Baryogenesis in Composite Higgs Models, JHEP 12 (2018) 099 [arXiv:1804.07314] [INSPIRE].

  25. [25]

    J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP 04 (2019) 024 [arXiv:1811.11104] [INSPIRE].

  26. [26]

    M. Joyce, T. Prokopec and N. Turok, Efficient electroweak baryogenesis from lepton transport, Phys. Lett. B 338 (1994) 269 [hep-ph/9401352] [INSPIRE].

  27. [27]

    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

  28. [28]

    J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak Baryogenesis and the Standard Model Effective Field Theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].

  29. [29]

    J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak Baryogenesis in Non-minimal Composite Higgs Models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    G.F. Giudice and M.E. Shaposhnikov, Strong sphalerons and electroweak baryogenesis, Phys. Lett. B 326 (1994) 118 [hep-ph/9311367] [INSPIRE].

  31. [31]

    S. Tulin and P. Winslow, Anomalous B meson mixing and baryogenesis, Phys. Rev. D 84 (2011) 034013 [arXiv:1105.2848] [INSPIRE].

  32. [32]

    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: Thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].

  34. [34]

    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa Interactions and Supersymmetric Electroweak Baryogenesis, Phys. Rev. Lett. 102 (2009) 061301 [arXiv:0808.1144] [INSPIRE].

  35. [35]

    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D 81 (2010) 063506 [arXiv:0905.4509] [INSPIRE].

  36. [36]

    C.-W. Chiang, K. Fuyuto and E. Senaha, Electroweak Baryogenesis with Lepton Flavor Violation, Phys. Lett. B 762 (2016) 315 [arXiv:1607.07316] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    H.-K. Guo, Y.-Y. Li, T. Liu, M. Ramsey-Musolf and J. Shu, Lepton-Flavored Electroweak Baryogenesis, Phys. Rev. D 96 (2017) 115034 [arXiv:1609.09849] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    E. Fuchs, M. Losada, Y. Nir and Y. Viernik, C P violation from τ, t and b dimension-6 Yukawa couplings — interplay of baryogenesis, EDM and Higgs physics, JHEP 05 (2020) 056 [arXiv:2003.00099] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    E. Fuchs, M. Losada, Y. Nir and Y. Viernik, Implications of the Upper Bound on hμ+μ on the Baryon Asymmetry of the Universe, Phys. Rev. Lett. 124 (2020) 181801 [arXiv:1911.08495] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    E. Fernández-Martínez, J. López-Pavón, T. Ota and S. Rosauro-Alcaraz, ν electroweak baryogenesis, JHEP 10 (2020) 063 [arXiv:2007.11008] [INSPIRE].

  41. [41]

    J. McDonald, Electroweak baryogenesis and dark matter via a gauge singlet scalar, Phys. Lett. B 323 (1994) 339 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  44. [44]

    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    T. Alanne, K. Tuominen and V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, Nucl. Phys. B 889 (2014) 692 [arXiv:1407.0688] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  46. [46]

    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    F.P. Huang, Z. Qian and M. Zhang, Exploring dynamical CP-violation induced baryogenesis by gravitational waves and colliders, Phys. Rev. D 98 (2018) 015014 [arXiv:1804.06813] [INSPIRE].

  48. [48]

    W. Cheng and L. Bian, From inflation to cosmological electroweak phase transition with a complex scalar singlet, Phys. Rev. D 98 (2018) 023524 [arXiv:1801.00662] [INSPIRE].

  49. [49]

    T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from cosmological phase transitions, JHEP 03 (2020) 004 [arXiv:1909.11356] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    O. Gould, J. Kozaczuk, L. Niemi, M.J. Ramsey-Musolf, T.V.I. Tenkanen and D.J. Weir, Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition, Phys. Rev. D 100 (2019) 115024 [arXiv:1903.11604] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [arXiv:1911.10206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    L. Bian, Y. Wu and K.-P. Xie, Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches, JHEP 12 (2019) 028 [arXiv:1909.02014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. 223 (1983) 544] [INSPIRE].

  55. [55]

    M. Quirós, Finite temperature field theory and phase transitions, in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259 (1999) [hep-ph/9901312] [INSPIRE].

  56. [56]

    G.D. Moore, Measuring the broken phase sphaleron rate nonperturbatively, Phys. Rev. D 59 (1999) 014503 [hep-ph/9805264] [INSPIRE].

  57. [57]

    R. Zhou, L. Bian and H.-K. Guo, Connecting the electroweak sphaleron with gravitational waves, Phys. Rev. D 101 (2020) 091903 [arXiv:1910.00234] [INSPIRE].

  58. [58]

    C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  60. [60]

    J. Crowder and N.J. Cornish, Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].

  61. [61]

    TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].

  62. [62]

    Y.-M. Hu, J. Mei and J. Luo, Science prospects for space-borne gravitational-wave missions, Natl. Sci. Rev. 4 (2017) 683 [INSPIRE].

    Article  Google Scholar 

  63. [63]

    W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4 (2017) 685 [INSPIRE].

    Article  Google Scholar 

  64. [64]

    W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011 [INSPIRE].

  66. [66]

    S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].

  67. [67]

    J. Ellis, M. Lewicki and J.M. No, On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal, JCAP 04 (2019) 003 [arXiv:1809.08242] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    C. Grojean and G. Servant, Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].

  69. [69]

    C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

  70. [70]

    C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

  71. [71]

    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy Budget of Cosmological First-order Phase Transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    X. Wang, F.P. Huang and X. Zhang, The energy budget and the gravitational wave spectra beyond the bag model, arXiv:2010.13770 [INSPIRE].

  73. [73]

    A. Megevand and S. Ramirez, Bubble nucleation and growth in very strong cosmological phase transitions, Nucl. Phys. B 919 (2017) 74 [arXiv:1611.05853] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  74. [74]

    A. Kobakhidze, C. Lagger, A. Manning and J. Yue, Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays, Eur. Phys. J. C 77 (2017) 570 [arXiv:1703.06552] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    J. Ellis, M. Lewicki and J.M. No, Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source, JCAP 07 (2020) 050 [arXiv:2003.07360] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. [76]

    X. Wang, F.P. Huang and X. Zhang, Phase transition dynamics and gravitational wave spectra of strong first-order phase transition in supercooled universe, JCAP 05 (2020) 045 [arXiv:2003.08892] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  77. [77]

    H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase Transitions in an Expanding Universe: Stochastic Gravitational Waves in Standard and Non-Standard Histories, JCAP 01 (2021) 001 [arXiv:2007.08537] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    J.M. No, Large Gravitational Wave Background Signals in Electroweak Baryogenesis Scenarios, Phys. Rev. D 84 (2011) 124025 [arXiv:1103.2159] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].

  80. [80]

    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall velocities, JCAP 09 (2014) 028 [arXiv:1407.3132] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].

  83. [83]

    Q.-H. Cao, F.P. Huang, K.-P. Xie and X. Zhang, Testing the electroweak phase transition in scalar extension models at lepton colliders, Chin. Phys. C 42 (2018) 023103 [arXiv:1708.04737] [INSPIRE].

  84. [84]

    A. Alves, T. Ghosh, H.-K. Guo and K. Sinha, Resonant Di-Higgs Production at Gravitational Wave Benchmarks: A Collider Study using Machine Learning, JHEP 12 (2018) 070 [arXiv:1808.08974] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    L. Bian, H.-K. Guo, Y. Wu and R. Zhou, Gravitational wave and collider searches for electroweak symmetry breaking patterns, Phys. Rev. D 101 (2020) 035011 [arXiv:1906.11664] [INSPIRE].

  86. [86]

    N. Chen, T. Li, Y. Wu and L. Bian, Complementarity of the future e+ e colliders and gravitational waves in the probe of complex singlet extension to the standard model, Phys. Rev. D 101 (2020) 075047 [arXiv:1911.05579] [INSPIRE].

  87. [87]

    P. Huang, A.J. Long and L.-T. Wang, Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves, Phys. Rev. D 94 (2016) 075008 [arXiv:1608.06619] [INSPIRE].

  88. [88]

    J. Kozaczuk, M.J. Ramsey-Musolf and J. Shelton, Exotic Higgs boson decays and the electroweak phase transition, Phys. Rev. D 101 (2020) 115035 [arXiv:1911.10210] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    A. Papaefstathiou and G. White, The Electro-Weak Phase Transition at Colliders: Confronting Theoretical Uncertainties and Complementary Channels, arXiv:2010.00597 [INSPIRE].

  90. [90]

    A. Alves, D. Gonçalves, T. Ghosh, H.-K. Guo and K. Sinha, Di-Higgs Blind Spots in Gravitational Wave Signals, arXiv:2007.15654 [INSPIRE].

  91. [91]

    FCC collaboration, HE-LHC: The High-Energy Large Hadron Collider : Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109 [INSPIRE].

  92. [92]

    A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    G. Bagliesi, Tau tagging at ATLAS and CMS, in 17th Symposium on Hadron Collider Physics 2006 (HCP 2006), 7, 2007 [arXiv:0707.0928] [INSPIRE].

  95. [95]

    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s} \) = 13 TeV pp collisions with ATLAS, Phys. Rev. D 98 (2018) 032009 [arXiv:1804.03602] [INSPIRE].

  96. [96]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  97. [97]

    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  98. [98]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  99. [99]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  100. [100]

    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  101. [101]

    ATLAS collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 12 (2018) 039 [arXiv:1807.11883] [INSPIRE].

  102. [102]

    M.E. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    E. Fuchs, M. Losada, Y. Nir and Y. Viernik, Analytic Techniques for Solving the Transport Equations in Electroweak Baryogenesis, arXiv:2007.06940 [INSPIRE].

  104. [104]

    K. Enqvist, A. Riotto and I. Vilja, Baryogenesis and the thermalization rate of stop, Phys. Lett. B 438 (1998) 273 [hep-ph/9710373] [INSPIRE].

  105. [105]

    P. Elmfors, K. Enqvist, A. Riotto and I. Vilja, Damping rates in the MSSM and electroweak baryogenesis, Phys. Lett. B 452 (1999) 279 [hep-ph/9809529] [INSPIRE].

  106. [106]

    V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke-Pan Xie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.04821

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, KP. Lepton-mediated electroweak baryogenesis, gravitational waves and the 4τ final state at the collider. J. High Energ. Phys. 2021, 90 (2021). https://doi.org/10.1007/JHEP02(2021)090

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Thermal Field Theory