T-duality in nonrelativistic open string theory

Abstract

Nonrelativistic open string theory is defined by a worldsheet theory that produces a Galilean invariant string spectrum and is described at low energies by a nonrelativistic Yang-Mills theory [1]. We study T-duality transformations in the path integral for the sigma model that describes nonrelativistic open string theory coupled to an arbitrary closed string background, described by a string Newton-Cartan geometry, Kalb-Ramond, and dilaton field. We prove that T-duality transformations map nonrelativistic open string theory to relativistic and noncommutative open string theory in the discrete light cone quantization (DLCQ), a quantization scheme relevant for Matrix string theory. We also show how the worldvolume dynamics of nonrelativistic open string theory described by the Dirac-Born-Infeld type action found in [1] maps to the Dirac-Born-Infeld actions describing the worldvolume theories of the DLCQ of open string theory and noncommutative open string theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Gomis, Z. Yan and M. Yu, Nonrelativistic Open String and Yang-Mills Theory, arXiv:2007.01886 [INSPIRE].

  2. [2]

    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    I.R. Klebanov and J.M. Maldacena, (1 + 1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys. A 16 (2001) 922 [Adv. Theor. Math. Phys. 4 (2000) 283] [hep-th/0006085] [INSPIRE].

  4. [4]

    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    E.A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, String Theory and String Newton-Cartan Geometry, J. Phys. A 53 (2020) 014001 [arXiv:1907.10668] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A New soluble sector of AdS5 × S5, JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett. B 594 (2004) 227 [hep-th/0404175] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev. D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev. D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    J. Klusoň, Remark About Non-Relativistic String in Newton-Cartan Background and Null Reduction, JHEP 05 (2018) 041 [arXiv:1803.07336] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP 11 (2018) 190 [arXiv:1810.05560] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and G. Oling, Relating non-relativistic string theories, JHEP 11 (2019) 071 [arXiv:1907.01663] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    U.H. Danielsson, A. Guijosa and M. Kruczenski, Newtonian gravitons and D-brane collective coordinates in wound string theory, JHEP 03 (2001) 041 [hep-th/0012183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    E.S. Santos, M. de Montigny, F.C. Khanna and A.E. Santana, Galilean covariant Lagrangian models, J. Phys. A 37 (2004) 9771 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    E. Bergshoeff, J. Rosseel and T. Zojer, Non-relativistic fields from arbitrary contracting backgrounds, Class. Quant. Grav. 33 (2016) 175010 [arXiv:1512.06064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    G. Festuccia, D. Hansen, J. Hartong and N.A. Obers, Symmetries and Couplings of Non-Relativistic Electrodynamics, JHEP 11 (2016) 037 [arXiv:1607.01753] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  19. [19]

    S. Chapman, L. Di Pietro, K.T. Grosvenor and Z. Yan, Renormalization of Galilean Electrodynamics, JHEP 10 (2020) 195 [arXiv:2007.03033] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    N. Seiberg, L. Susskind and N. Toumbas, Strings in background electric field, space/time noncommutativity and a new noncritical string theory, JHEP 06 (2000) 021 [hep-th/0005040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    R. Gopakumar, J.M. Maldacena, S. Minwalla and A. Strominger, S duality and noncommutative gauge theory, JHEP 06 (2000) 036 [hep-th/0005048] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    J. Klusoň, Note About T-duality of Non-Relativistic String, JHEP 08 (2019) 074 [arXiv:1811.12658] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [INSPIRE].

  26. [26]

    T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    E. Alvarez, J.L.F. Barbón and J. Borlaf, T duality for open strings, Nucl. Phys. B 479 (1996) 218 [hep-th/9603089] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Roček and E.P. Verlinde, Duality, quotients, and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    J. Klusoň, Non-Relativistic D-brane from T-duality Along Null Direction, JHEP 10 (2019) 153 [arXiv:1907.05662] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    J. Klusoň, Unstable D-brane in Torsional Newton-Cartan Background, JHEP 09 (2020) 191 [arXiv:2001.11543] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.05493

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomis, J., Yan, Z. & Yu, M. T-duality in nonrelativistic open string theory. J. High Energ. Phys. 2021, 87 (2021). https://doi.org/10.1007/JHEP02(2021)087

Download citation

Keywords

  • Bosonic Strings
  • String Duality
  • D-branes
  • Sigma Models