Abstract
We consider the Witten-Reshetikhin-Turaev invariants or Chern-Simons partition functions at or around roots of unity \( q={e}^{\frac{2\pi i}{K}} \) with a rational level K = \( \frac{r}{s} \) where r and s are coprime integers. From the exact expression for the G = SU(2) Witten-Reshetikhin-Turaev invariants of the Seifert manifolds at a rational level obtained by Lawrence and Rozansky, we provide an expected form of the structure of the Witten-Reshetikhin-Turaev invariants in terms of the homological blocks at a rational level. Also, we discuss the asymptotic expansion of knot invariants around roots of unity where we take a limit different from the limit in the standard volume conjecture.
References
- [1]
E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].
- [2]
N. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547.
- [3]
S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, JHEP 07 (2017) 071 [arXiv:1602.05302] [INSPIRE].
- [4]
S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, J. Knot Theor. Ramifications 29 (2020) 2040003 [arXiv:1701.06567] [INSPIRE].
- [5]
S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
- [6]
S. Chun, A resurgence analysis of the SU(2) Chern-Simons partition functions on a Brieskorn homology sphere Σ(2, 5, 7), arXiv:1701.03528 [INSPIRE].
- [7]
M.C.N. Cheng, S. Chun, F. Ferrari, S. Gukov and S.M. Harrison, 3d Modularity, JHEP 10 (2019) 010 [arXiv:1809.10148] [INSPIRE].
- [8]
H.-J. Chung, BPS Invariants for Seifert Manifolds, JHEP 03 (2020) 113 [arXiv:1811.08863] [INSPIRE].
- [9]
S. Gukov and C. Manolescu, A two-variable series for knot complements, arXiv:1904.06057 [INSPIRE].
- [10]
R. Lawrence and L. Rozansky, Witten-reshetikhin-turaev invariants of seifert manifolds, Commun. Math. Phys. 205 (1999) 287.
- [11]
H.-J. Chung, unpublished note (2018).
- [12]
S. Gukov and D. Pei, unpublished note (2017).
- [13]
T. Dimofte and S. Garoufalidis, Quantum modularity and complex Chern-Simons theory, Commun. Num. Theor. Phys. 12 (2018) 1 [arXiv:1511.05628] [INSPIRE].
- [14]
S. Garoufalidis and D. Zagier, Asymptotics of Nahm sums at roots of unity, arXiv:1812.07690 [INSPIRE].
- [15]
P. Kucharski, Ẑ invariants at rational τ, JHEP 09 (2019) 092 [arXiv:1906.09768] [INSPIRE].
- [16]
R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999) 93.
- [17]
D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001) 945.
- [18]
K. Hikami and A.N. Kirillov, Torus knot and minimal model, Phys. Lett. B 575 (2003) 343 [hep-th/0308152] [INSPIRE].
- [19]
K. Hikami, Quantum invariant for torus link and modular forms, Commun. Math. Phys. 246 (2004) 403.
- [20]
K. Hikami, Quantum invariant, modular form, and lattice points, Int. Math. Res. Not. (2005) 121 [math/0409016].
- [21]
K. Hikami, Quantum invariants, modular forms, and lattice points. II, J. Math. Phys. 47 (2006) 102301 [math/0604091].
- [22]
T. Dimofte and S. Gukov, Quantum Field Theory and the Volume Conjecture, Contemp. Math. 541 (2011) 41 [arXiv:1003.4808] [INSPIRE].
- [23]
H. Awata, S. Gukov, P. Sulkowski and H. Fuji, Volume Conjecture: Refined and Categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].
- [24]
H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].
- [25]
H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].
- [26]
S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for Twist Knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].
- [27]
S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Su-lkowski, Sequencing BPS Spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].
- [28]
D. Zagier, The Dilogarithm Function, in Les Houches School of Physics: Frontiers in Number Theory, Physics and Geometry, Les Houches France (2003), pg. 3 [INSPIRE].
- [29]
C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d \( \mathcal{N} \) = 2 theories, JHEP 11 (2018) 004 [arXiv:1807.02328] [INSPIRE].
- [30]
L. Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., Amsterdam The Netherlands (1981).
- [31]
N.M. Dunfield, S. Gukov and J. Rasmussen, The Superpolynomial for knot homologies, math/0505662 [INSPIRE].
- [32]
S. Gukov and M. Stošić, Homological Algebra of Knots and BPS States, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].
- [33]
A. Gadde, S. Gukov and P. Putrov, Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP 05 (2014) 047 [arXiv:1302.0015] [INSPIRE].
- [34]
Y. Yoshida and K. Sugiyama, Localization of three-dimensional \( \mathcal{N} \) = 2 supersymmetric theories on S1 × D2, PTEP 2020 (2020) 113B02 [arXiv:1409.6713] [INSPIRE].
- [35]
T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP 05 (2018) 060 [arXiv:1712.07654] [INSPIRE].
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1906.12344
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chung, HJ. BPS invariants for 3-manifolds at rational level K. J. High Energ. Phys. 2021, 83 (2021). https://doi.org/10.1007/JHEP02(2021)083
Received:
Accepted:
Published:
Keywords
- Chern-Simons Theories
- Topological Field Theories
- Field Theories in Lower Dimensions
- Gauge Symmetry