The scalar chemical potential in cosmological collider physics

Abstract

Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale (H). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H. In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, \( {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H \), to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength fNL\( \mathcal{O} \)(0.01–10) for an extended range of scalar masses \( \lesssim {\overset{\cdot }{\phi}}_0^{1/2} \), potentially as high as 1015 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level, which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686 (2011) [DOI] [arXiv:0907.5424] [INSPIRE].

  2. [2]

    Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  3. [3]

    Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

  4. [4]

    N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Non-Gaussianity from inflation: Theory and observations, Phys. Rept. 402 (2004) 103 [astro-ph/0406398] [INSPIRE].

  5. [5]

    X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Alvarez et al., Testing Inflation with Large Scale Structure: Connecting Hopes with Reality, arXiv:1412.4671 [INSPIRE].

  7. [7]

    L. Verde, Non-Gaussianity from Large-Scale Structure Surveys, Adv. Astron. 2010 (2010) 768675 [arXiv:1001.5217] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1984).

  9. [9]

    X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  11. [11]

    X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial Fields on Large-Scale Structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  19. [19]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial Perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    A. Kehagias and A. Riotto, On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP 07 (2017) 046 [arXiv:1705.05834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    D. Baumann, G. Goon, H. Lee and G.L. Pimentel, Partially Massless Fields During Inflation, JHEP 04 (2018) 140 [arXiv:1712.06624] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. [26]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105 [arXiv:1811.00024] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP 04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    Y.-P. Wu, L. Yang and A. Kusenko, Leptogenesis from spontaneous symmetry breaking during inflation, JHEP 12 (2019) 088 [arXiv:1905.10537] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    L. Li, T. Nakama, C.M. Sou, Y. Wang and S. Zhou, Gravitational Production of Superheavy Dark Matter and Associated Cosmological Signatures, JHEP 07 (2019) 067 [arXiv:1903.08842] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    S. Alexander, S.J. Gates, L. Jenks, K. Koutrolikos and E. McDonough, Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP 10 (2019) 156 [arXiv:1907.05829] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011 [arXiv:1907.07390] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP 01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

  34. [34]

    A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, Phys. Rev. D 101 (2020) 023519 [arXiv:1908.00019] [INSPIRE].

  35. [35]

    S. Kumar and R. Sundrum, Cosmological Collider Physics and the Curvaton, JHEP 04 (2020) 077 [arXiv:1908.11378] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    T. Liu, X. Tong, Y. Wang and Z.-Z. Xianyu, Probing P and CP-violations on the Cosmological Collider, JHEP 04 (2020) 189 [arXiv:1909.01819] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    L.-T. Wang and Z.-Z. Xianyu, In Search of Large Signals at the Cosmological Collider, JHEP 02 (2020) 044 [arXiv:1910.12876] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP 12 (2020) 204 [arXiv:1910.14051] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    L. Li, S. Lu, Y. Wang and S. Zhou, Cosmological Signatures of Superheavy Dark Matter, JHEP 07 (2020) 231 [arXiv:2002.01131] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    Y. Wang and Y. Zhu, Cosmological Collider Signatures of Massive Vectors from Non-Gaussian Gravitational Waves, JCAP 04 (2020) 049 [arXiv:2001.03879] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    L.-T. Wang and Z.-Z. Xianyu, Gauge Boson Signals at the Cosmological Collider, JHEP 11 (2020) 082 [arXiv:2004.02887] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    A. Testa and M.B. Wise, Impact of transforming to conformal Fermi coordinates on quasisingle field non-Gaussianity, Phys. Rev. D 102 (2020) 023533 [arXiv:2004.06126] [INSPIRE].

  43. [43]

    D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization, arXiv:2005.04234 [INSPIRE].

  44. [44]

    P. Creminelli, On non-Gaussianities in single-field inflation, JCAP 10 (2003) 003 [astro-ph/0306122] [INSPIRE].

  45. [45]

    P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP 11 (2015) 021 [arXiv:1508.00891] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    P. Adshead, L. Pearce, M. Peloso, M.A. Roberts and L. Sorbo, Phenomenology of fermion production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    W.D. Garretson, G.B. Field and S.M. Carroll, Primordial magnetic fields from pseudoGoldstone bosons, Phys. Rev. D 46 (1992) 5346 [hep-ph/9209238] [INSPIRE].

  48. [48]

    N. Barnaby and M. Peloso, Large NonGaussianity in Axion Inflation, Phys. Rev. Lett. 106 (2011) 181301 [arXiv:1011.1500] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    A. Moradinezhad Dizgah and C. Dvorkin, Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation, JCAP 01 (2018) 010 [arXiv:1708.06473] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, Galaxy Bispectrum from Massive Spinning Particles, JCAP 05 (2018) 013 [arXiv:1801.07265] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    K. Kogai, K. Akitsu, F. Schmidt and Y. Urakawa, Galaxy imaging surveys as spin-sensitive detector for cosmological colliders, arXiv:2009.05517 [INSPIRE].

  52. [52]

    A. Loeb and M. Zaldarriaga, Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation, Phys. Rev. Lett. 92 (2004) 211301 [astro-ph/0312134] [INSPIRE].

  53. [53]

    P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, JCAP 10 (2017) 058 [arXiv:1606.00513] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  56. [56]

    K.A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009) 1 [arXiv:0809.4944] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev. D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].

  58. [58]

    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].

  59. [59]

    M. Laine and A. Vuorinen, Basics of Thermal Field Theory: A Tutorial on Perturbative Computations, Lecture Notes in Physics, Springer International Publishing AG, Switzerland (2016).

  60. [60]

    Y. Wang, Inflation, Cosmic Perturbations and Non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

  62. [62]

    N.M. Temme, Large parameter cases of the gauss hypergeometric function, J. Comput. Appl. Math. 153 (2003) 441.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

  64. [64]

    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

  65. [65]

    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. 539 (2002) 303] [hep-ph/0110096] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arushi Bodas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.04727

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bodas, A., Kumar, S. & Sundrum, R. The scalar chemical potential in cosmological collider physics. J. High Energ. Phys. 2021, 79 (2021). https://doi.org/10.1007/JHEP02(2021)079

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Effective Field Theories