Gapped Goldstones at the cut-off scale: a non-relativistic EFT

Abstract

At finite density, the spontaneous breakdown of an internal non-Abelian symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra and proportional to the chemical potential: the gapped Goldstones. Generically the gap of these states is comparable to that of other non-universal excitations or to the energy scale where the dynamics is strongly coupled. This makes it non-straightforward to derive a universal effective field theory (EFT) description realizing all the symmetries. Focusing on the illustrative example of a fully broken SU(2) group, we demonstrate that such an EFT can be constructed by carving out around the Goldstones, gapless and gapped, at small 3-momentum. The rules governing the EFT, where the gapless Goldstones are soft while the gapped ones are slow, are those of standard nonrelativistic EFTs, like for instance nonrelativistic QED. In particular, the EFT Lagrangian formally preserves gapped Goldstone number, and processes where such number is not conserved are described inclusively by allowing for imaginary parts in the Wilson coefficients. Thus, while the symmetry is manifestly realized in the EFT, unitarity is not. We comment on the application of our construction to the study of the large charge sector of conformal field theories with non-Abelian symmetries.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).

    Google Scholar 

  6. [6]

    R.V. Lange, Goldstone Theorem in Nonrelativistic Theories, Phys. Rev. Lett. 14 (1965) 3 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    H.B. Nielsen and S. Chadha, On How to Count Goldstone Bosons, Nucl. Phys. B 105 (1976) 445 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett. 110 (2013) 181601 [arXiv:1302.4800] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    T. Brauner, Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems, Symmetry 2 (2010) 609 [arXiv:1001.5212] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  10. [10]

    G. Morchio and F. Strocchi, Effective Non-Symmetric Hamiltonians and Goldstone Boson Spectrum, Annals Phys. 185 (1988) 241 [Erratum ibid. 191 (1989) 400] [INSPIRE].

  11. [11]

    F. Strocchi, Symmetry Breaking, vol. 732, Springer (2008), [DOI] [INSPIRE].

  12. [12]

    A. Nicolis and F. Piazza, Implications of Relativity on Nonrelativistic Goldstone Theorems: Gapped Excitations at Finite Charge Density, Phys. Rev. Lett. 110 (2013) 011602 [Addendum ibid. 110 (2013) 039901] [arXiv:1204.1570] [INSPIRE].

  13. [13]

    A. Nicolis, R. Penco, F. Piazza and R.A. Rosen, More on gapped Goldstones at finite density: More gapped Goldstones, JHEP 11 (2013) 055 [arXiv:1306.1240] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    H. Watanabe, T. Brauner and H. Murayama, Massive Nambu-Goldstone Bosons, Phys. Rev. Lett. 111 (2013) 021601 [arXiv:1303.1527] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Nicolis and F. Piazza, Spontaneous Symmetry Probing, JHEP 06 (2012) 025 [arXiv:1112.5174] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    H.J. Maris, Phonon-phonon interactions in liquid helium, Rev. Mod. Phys. 49 (1977) 341 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    T. Brauner and M.F. Jakobsen, Scattering amplitudes of massive Nambu-Goldstone bosons, Phys. Rev. D 97 (2018) 025021 [arXiv:1709.01251] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    P. Labelle, G.P. Lepage and U. Magnea, Order m-alpha**8 contributions to the decay rate of orthopositronium, Phys. Rev. Lett. 72 (1994) 2006 [hep-ph/9310208] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    E. Braaten, H.W. Hammer and G.P. Lepage, Open Effective Field Theories from Deeply Inelastic Reactions, Phys. Rev. D 94 (2016) 056006 [arXiv:1607.02939] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  24. [24]

    H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev. D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M. Oshikawa and I. Affleck, Electron spin resonance in s = \( \frac{1}{2} \) antiferromagnetic chains, Phys. Rev. B 65 (2002) 134410.

    ADS  Article  Google Scholar 

  26. [26]

    D.B. Kaplan and A.E. Nelson, Strange Goings on in Dense Nucleonic Matter, Phys. Lett. B 175 (1986) 57 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    T. Schäfer, D.T. Son, M.A. Stephanov, D. Toublan and J.J.M. Verbaarschot, Kaon condensation and Goldstone’s theorem, Phys. Lett. B 522 (2001) 67 [hep-ph/0108210] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  29. [29]

    G.E. Brown, V. Thorsson, K. Kubodera and M. Rho, A novel mechanism for kaon condensation in neutron star matter, Phys. Lett. B 291 (1992) 355 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP 04 (2017) 059 [arXiv:1610.04495] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, JHEP 10 (2019) 038 [arXiv:1705.05825] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    A. Nicolis and R. Penco, Mutual Interactions of Phonons, Rotons, and Gravity, Phys. Rev. B 97 (2018) 134516 [arXiv:1705.08914] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    T. Brauner, Spontaneous symmetry breaking in the linear sigma model at finite chemical potential: One-loop corrections, Phys. Rev. D 74 (2006) 085010 [hep-ph/0607102] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    M.E. Luke and M.J. Savage, Power counting in dimensionally regularized NRQCD, Phys. Rev. D 57 (1998) 413 [hep-ph/9707313] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    V.I. Ogievetsky, Nonlinear realizations of internal and space-time symmetries, Proceedings of the Xth Winter School of Theoretical Physics in Karpacz 1 (1974) 117.

  38. [38]

    L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets, and Spinning Objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].

  39. [39]

    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  41. [41]

    M.H. Namjoo, A.H. Guth and D.I. Kaiser, Relativistic Corrections to Nonrelativistic Effective Field Theories, Phys. Rev. D 98 (2018) 016011 [arXiv:1712.00445] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  43. [43]

    A.H. Hoang, Heavy quarkonium dynamics, hep-ph/0204299 [INSPIRE].

  44. [44]

    I.Z. Rothstein, TASI lectures on effective field theories, 8, 2003 [hep-ph/0308266] [INSPIRE].

  45. [45]

    H.W. Griesshammer, Threshold expansion and dimensionally regularized NRQCD, Phys. Rev. D 58 (1998) 094027 [hep-ph/9712467] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    H.W. Griesshammer, Power counting and β-function in NRQCD, Nucl. Phys. B 579 (2000) 313 [hep-ph/9810235] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    A. Caputo, A. Esposito and A.D. Polosa, Sub-MeV Dark Matter and the Goldstone Modes of Superfluid Helium, Phys. Rev. D 100 (2019) 116007 [arXiv:1907.10635] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251 (1990) 288 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    D.B. Kaplan, Five lectures on effective field theory, nucl-th/0510023 [INSPIRE].

  51. [51]

    S. Moroz, C. Hoyos, C. Benzoni and D.T. Son, Effective field theory of a vortex lattice in a bosonic superfluid, SciPost Phys. 5 (2018) 039 [arXiv:1803.10934] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    I.Z. Rothstein and P. Shrivastava, Symmetry Obstruction to Fermi Liquid Behavior in the Unitary Limit, Phys. Rev. B 99 (2019) 035101 [arXiv:1712.07797] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    E.A. Ivanov and J. Niederle, Gauge Formulation of Gravitation Theories. 1. The Poincaré, de Sitter and Conformal Cases, Phys. Rev. D 25 (1982) 976 [INSPIRE].

  56. [56]

    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Cuomo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.12924

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuomo, G., Esposito, A., Gendy, E. et al. Gapped Goldstones at the cut-off scale: a non-relativistic EFT. J. High Energ. Phys. 2021, 68 (2021). https://doi.org/10.1007/JHEP02(2021)068

Download citation

Keywords

  • Effective Field Theories
  • Global Symmetries
  • Renormalization Group