On the reinterpretation of non-resonant searches for Higgs boson pairs

Abstract

The detection of production of a pair of Higgs bosons before the end of LHC operation would be a clear evidence of New Physics (NP). As searches for non-resonant production of Higgs pairs are being designed it is of particular importance to be able to conveniently present current experimental results in terms of limits in the most ‘model-independent’ fashion possible. To this end, in this article we provide an analytic parametrization of the differential Higgs-pair production at the LHC in the effective field theory (EFT) extension of the SM. It results from a fit to the theory prediction for the gg → hh cross section at the 13 TeV LHC. Subsequently the resulting formula is used for a reweighing technique that allows to recast exclusion bounds from ATLAS and CMS hh → \( \gamma \gamma b\overline{b} \) searches to any point of the considered EFT parameter space. We demonstrate with a fast simulation of the LHC detectors that with this approach it is possible to cover the continuous EFT parameter space, taking correctly into account the efficiencies of signal selections, without the necessity of rerunning a large number of full detector simulations. Finally, the resulting exclusion bounds are confronted with several explicit models, such as setups with additional scalars, including 2HDM, vector-like fermions, and minimal composite Higgs models, which are mapped to the EFT.

A preprint version of the article is available at ArXiv.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    I.V. Krive and A.D. Linde, On the vacuum stability problem in gauge theories, Nucl. Phys. B 117 (1976) 265 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the Standard Model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    F. Goertz, Electroweak symmetry breaking without the μ2 term, Phys. Rev. D 94 (2016) 015013 [arXiv:1504.00355] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    P. Huang, A. Joglekar, B. Li and C.E.M. Wagner, Probing the electroweak phase transition at the LHC, Phys. Rev. D 93 (2016) 055049 [arXiv:1512.00068] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    A. Carmona and F. Goertz, A naturally light Higgs without light top partners, JHEP 05 (2015) 002 [arXiv:1410.8555] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A. Carvalho, M. Dall’Osso, T. Dorigo, F. Goertz, C.A. Gottardo and M. Tosi, Higgs pair production: choosing benchmarks with cluster analysis, JHEP 04 (2016) 126 [arXiv:1507.02245] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Exploring theory space with Monte Carlo reweighting, JHEP 10 (2014) 078 [arXiv:1404.7129] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy, Eur. Phys. J. C 76 (2016) 674 [arXiv:1607.00763] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into a \( b\overline{b} \) pair in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].

  17. [17]

    A. Carvalho et al., Analytical parametrization and shape classification of anomalous HH production in the EFT approach, arXiv:1608.06578 [INSPIRE].

  18. [18]

    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}\gamma \gamma \) final state using pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2016-004, CERN, Geneva, Switzerland (2016).

  19. [19]

    CMS collaboration, Search for H(\( b\overline{b} \))H(γγ) decays at 13 TeV, Tech. Rep. CMS-PAS-HIG-16-032, CERN, Geneva, Switzerland (2016).

  20. [20]

    ATLAS collaboration, Searches for Higgs boson pair production in the hh → bbττ, γγWW, γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].

  21. [21]

    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state using pp collision data at \( \sqrt{s} \) = 8 TeV from the ATLAS detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].

  22. [22]

    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].

  23. [23]

    CMS collaboration, Search for resonant and nonresonant Higgs boson pair production in the \( b\overline{b}\mathrm{\ell }v\mathrm{\ell}v \) final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2018) 054 [arXiv:1708.04188] [INSPIRE].

  24. [24]

    CMS collaboration, Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 778 (2018) 101 [arXiv:1707.02909] [INSPIRE].

  25. [25]

    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].

  26. [26]

    D. de Florian, I. Fabre and J. Mazzitelli, Higgs boson pair production at NNLO in QCD including dimension 6 operators, JHEP 10 (2017) 215 [arXiv:1704.05700] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    J. Butterworth et al., PDF4LHC recommendations for LHC run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  31. [31]

    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    ADS  MATH  Google Scholar 

  32. [32]

    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  33. [33]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  34. [34]

    CMS delphes card, https://github.com/delphes/delphes/blob/master/cards/delphes_card_CMS.tcl.

  35. [35]

    S. Dawson and C.W. Murphy, Standard Model EFT and extended scalar sectors, Phys. Rev. D 96 (2017) 015041 [arXiv:1704.07851] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].

    Google Scholar 

  37. [37]

    H. Bélusca-Maïto, A. Falkowski, D. Fontes, J.C. Romão and J.P. Silva, Higgs EFT for 2HDM and beyond, Eur. Phys. J. C 77 (2017) 176 [arXiv:1611.01112] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].

    Google Scholar 

  39. [39]

    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    R. Contino, The Higgs as a composite Nambu-Goldstone boson, in Theoretical advanced study institute in elementary particle physics: physics of the large and the small, World Scientific, Singapore (2011), pg. 235 [arXiv:1005.4269] [INSPIRE].

  42. [42]

    S. Baker and R.D. Cousins, Clarification of the use of chi-square and likelihood functions in fits to histograms, Nucl. Instrum. Meth. 221 (1984) 437 [INSPIRE].

    Google Scholar 

  43. [43]

    S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60.

    MATH  Google Scholar 

  44. [44]

    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model effective field theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    S. Dawson, A. Ismail and I. Low, What’s in the loop? The anatomy of double Higgs production, Phys. Rev. D 91 (2015) 115008 [arXiv:1504.05596] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    G. Cacciapaglia et al., Probing vector-like quark models with Higgs-boson pair production, JHEP 07 (2017) 005 [arXiv:1703.10614] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    CMS collaboration, Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, arXiv:2011.12373 [INSPIRE].

  48. [48]

    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 122 (2019) 121803 [arXiv:1811.09689] [INSPIRE].

  49. [49]

    A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective Lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].

    ADS  MATH  Google Scholar 

  51. [51]

    G. Brooijmans et al., Les Houches 2015: physics at TeV colliders — new physics working group report, in 9th Les Houches workshop on physics at TeV colliders, (2016) [arXiv:1605.02684] [INSPIRE].

  52. [52]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

  53. [53]

    A. Carmona and F. Goertz, Custodial leptons and Higgs decays, JHEP 04 (2013) 163 [arXiv:1301.5856] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: mh = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    P. Posch, Enhancement of h → γγ in the two Higgs doublet model type I, Phys. Lett. B 696 (2011) 447 [arXiv:1001.1759] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    A.G. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    A.G. Akeroyd and S. Moretti, Enhancement of H → γγ from charged Higgs bosons in the Higgs triplet model, PoS(CHARGED2012)035 (2012) [arXiv:1210.6882] [INSPIRE].

  58. [58]

    A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, hγγ coupling in Higgs triplet model, in International workshop on future linear colliders (LCWS11), (2012) [arXiv:1202.6621] [INSPIRE].

  59. [59]

    A. Falkowski and A. Falkowski, Higgs basis: proposal for an EFT basis choice for LHC HXSWG, (2015).

  60. [60]

    A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    M. Carena, L. Da Rold and E. Pontón, Minimal composite Higgs models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    B. Hespel, D. Lopez-Val and E. Vryonidou, Higgs pair production via gluon fusion in the two-Higgs-doublet model, JHEP 09 (2014) 124 [arXiv:1407.0281] [INSPIRE].

    ADS  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian Goertz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1710.08261

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A., Goertz, F., Mimasu, K. et al. On the reinterpretation of non-resonant searches for Higgs boson pairs. J. High Energ. Phys. 2021, 49 (2021). https://doi.org/10.1007/JHEP02(2021)049

Download citation

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Higgs Physics