Constraints on neutrino non-standard interactions from LHC data with large missing transverse momentum

Abstract

The possible non-standard interactions (NSIs) of neutrinos with matter plays important role in the global determination of neutrino properties. In our study we select various data sets from LHC measurements at 13 TeV with integrated luminosities of 35 ∼ 139 fb1, including production of a single jet, photon, W/Z boson, or charged lepton accompanied with large missing transverse momentum. We derive constraints on neutral-current NSIs with quarks imposed by different data sets in a framework of either effective operators or simplified Z′ models. We use theoretical predictions of productions induced by NSIs at next-to-leading order in QCD matched with parton showering which stabilize the theory predictions and result in more robust constraints. In a simplified Z′ model we obtain a 95% CLs upper limit on the conventional NSI strength ϵ of 0.042 and 0.0028 for a Z′ mass of 0.2 and 2 TeV respectively. We also discuss possible improvements from future runs of LHC with higher luminosities.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  2. [2]

    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Article  Google Scholar 

  5. [5]

    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    C. Soumya, M. Ghosh, S.K. Raut, N. Sinha and P. Mehta, Probing muonic charged current nonstandard interactions at decay-at-rest facilities in conjunction with T2HK, Phys. Rev. D 101 (2020) 055009 [arXiv:1911.05021] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A.D. Santos, Sensitivity of reactor experiments to nonstandard neutrino interactions in beta decay rates, arXiv:2007.07409 [INSPIRE].

  8. [8]

    C.X. Yue and X.J. Cheng, Constraints on the charged-current non-standard neutrino interactions induced by the gauge boson W’, Nucl. Phys. B 963 (2021) 115280 [arXiv:2008.10027] [INSPIRE].

    Article  Google Scholar 

  9. [9]

    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    S.P. Mikheyev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  11. [11]

    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Chatterjee, F. Kamiya, C.A. Moura and J. Yu, Impact of Matter Density Profile Shape on Non-Standard Interactions at DUNE, arXiv:1809.09313 [INSPIRE].

  13. [13]

    S.-F. Ge and S.J. Parke, Scalar Nonstandard Interactions in Neutrino Oscillation, Phys. Rev. Lett. 122 (2019) 211801 [arXiv:1812.08376] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    K.S. Babu, G. Chauhan and P.S. Bhupal Dev, Neutrino nonstandard interactions via light scalars in the Earth, Sun, supernovae, and the early Universe, Phys. Rev. D 101 (2020) 095029 [arXiv:1912.13488] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    P. Bakhti and M. Rajaee, Sensitivities of future solar neutrino observatories to nonstandard neutrino interactions, Phys. Rev. D 102 (2020) 035024 [arXiv:2003.12984] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    A. Garcia, R. Gauld, A. Heijboer and J. Rojo, Complete predictions for high-energy neutrino propagation in matter, JCAP 09 (2020) 025 [arXiv:2004.04756] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    N. Fornengo, M. Maltoni, R. Tomas and J.W.F. Valle, Probing neutrino nonstandard interactions with atmospheric neutrino data, Phys. Rev. D 65 (2002) 013010 [hep-ph/0108043] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Liao, D. Marfatia and K. Whisnant, Degeneracies in long-baseline neutrino experiments from nonstandard interactions, Phys. Rev. D 93 (2016) 093016 [arXiv:1601.00927] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [Erratum ibid. 95 (2017) 079903] [arXiv:1604.05772] [INSPIRE].

  21. [21]

    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [Addendum ibid. 12 (2020) 152] [arXiv:1805.04530] [INSPIRE].

  22. [22]

    I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, On the Determination of Leptonic CP-violation and Neutrino Mass Ordering in Presence of Non-Standard Interactions: Present Status, JHEP 06 (2019) 055 [arXiv:1905.05203] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    B. Dutta, R.F. Lang, S. Liao, S. Sinha, L. Strigari and A. Thompson, A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation data, JHEP 09 (2020) 106 [arXiv:2002.03066] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, On the effect of NSI in the present determination of the mass ordering, arXiv:2004.04745 [INSPIRE].

  25. [25]

    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Karmakar and S. Pandey, XENON1T constraints on neutrino non-standard interactions, arXiv:2007.11892 [INSPIRE].

  27. [27]

    KM3NeT collaboration, Neutrino Oscillations and Non-standard Interactions with KM3NeT-ORCA, in Prospects in Neutrino Physics, 4, 2020 [arXiv:2004.05004] [INSPIRE].

  28. [28]

    A. Esmaili and A.Y. Smirnov, Probing Non-Standard Interaction of Neutrinos with IceCube and DeepCore, JHEP 06 (2013) 026 [arXiv:1304.1042] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    A. Esmaili and H. Nunokawa, On the robustness of IceCube’s bound on sterile neutrinos in the presence of non-standard interactions, Eur. Phys. J. C 79 (2019) 70 [arXiv:1810.11940] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, J. Phys. G 43 (2016) 095005 [arXiv:1510.08261] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. de Gouvêa and K.J. Kelly, Non-standard Neutrino Interactions at DUNE, Nucl. Phys. B 908 (2016) 318 [arXiv:1511.05562] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Verma and S. Bhardwaj, Nonstandard Interactions and Prospects for Studying Standard Parameter Degeneracies in DUNE and T2HKK, Adv. High Energy Phys. 2019 (2019) 8464535 [arXiv:1808.04263] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. [33]

    M. Masud, S. Roy and P. Mehta, Correlations and degeneracies among the NSI parameters with tunable beams at DUNE, Phys. Rev. D 99 (2019) 115032 [arXiv:1812.10290] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A. Giarnetti and D. Meloni, Probing Source and Detector NSI parameters at the DUNE Near Detector, arXiv:2005.10272 [INSPIRE].

  35. [35]

    Super-Kamiokande collaboration, Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II, Phys. Rev. D 84 (2011) 113008 [arXiv:1109.1889] [INSPIRE].

  36. [36]

    Borexino collaboration, Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II, JHEP 02 (2020) 038 [arXiv:1905.03512] [INSPIRE].

  37. [37]

    N.C. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich-Funchal, Probing Non-Standard Neutrino Interactions with Neutrino Factories, JHEP 12 (2007) 002 [arXiv:0709.1980] [INSPIRE].

    Article  Google Scholar 

  38. [38]

    O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    L.J. Flores, E.A. Garcés and O.G. Miranda, Exploring NSI degeneracies in long-baseline experiments, Phys. Rev. D 98 (2018) 035030 [arXiv:1806.07951] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    W.-J. Feng, J. Tang, T.-C. Wang and Y.-X. Zhou, Nonstandard interactions versus planet-scale neutrino oscillations, Phys. Rev. D 100 (2019) 115034 [arXiv:1909.12674] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    O. Yasuda, Neutrino Oscillations at low energy long baseline experiments in the presence of nonstandard interactions and parameter degeneracy, PTEP 2020 (2020) 063B03 [arXiv:2002.01616] [INSPIRE].

  42. [42]

    P.B. Denton, J. Gehrlein and R. Pestes, CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data, arXiv:2008.01110 [INSPIRE].

  43. [43]

    T2K collaboration, Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020) 339 [Erratum ibid. 583 (2020) E16] [arXiv:1910.03887] [INSPIRE].

  44. [44]

    S.S. Chatterjee and A. Palazzo, Non-standard neutrino interactions as a solution to the NOνA and T2K discrepancy, arXiv:2008.04161 [INSPIRE].

  45. [45]

    CHARM collaboration, Experimental Verification of the Universality of νe and νμ Coupling to the Neutral Weak Current, Phys. Lett. B 180 (1986) 303 [INSPIRE].

  46. [46]

    NuTeV collaboration, A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].

  47. [47]

    P. Coloma, P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Curtailing the Dark Side in Non-Standard Neutrino Interactions, JHEP 04 (2017) 116 [arXiv:1701.04828] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

  49. [49]

    J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    W. Altmannshofer, M. Tammaro and J. Zupan, Non-standard neutrino interactions and low energy experiments, JHEP 09 (2019) 083 [arXiv:1812.02778] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    O.G. Miranda, G. Sanchez Garcia and O. Sanders, Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case, Adv. High Energy Phys. 2019 (2019) 3902819 [arXiv:1902.09036] [INSPIRE].

    Article  Google Scholar 

  54. [54]

    C. Giunti, General COHERENT constraints on neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 035039 [arXiv:1909.00466] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [Addendum ibid. 12 (2020) 071] [arXiv:1911.09109] [INSPIRE].

  56. [56]

    B.C. Canas, E.A. Garces, O.G. Miranda, A. Parada and G. Sanchez Garcia, Interplay between nonstandard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments, Phys. Rev. D 101 (2020) 035012 [arXiv:1911.09831] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    T. Han, J. Liao, H. Liu and D. Marfatia, Nonstandard neutrino interactions at COHERENT, DUNE, T2HK and LHC, JHEP 11 (2019) 028 [arXiv:1910.03272] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e+ e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing Nonstandard Standard Model Backgrounds with LHC Monojets, Phys. Lett. B 714 (2012) 267 [arXiv:1111.5331] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    D. Choudhury, K. Ghosh and S. Niyogi, Probing nonstandard neutrino interactions at the LHC Run II, Phys. Lett. B 784 (2018) 248 [arXiv:1801.01513] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    K.S. Babu, D. Gonçalves, S. Jana and P.A.N. Machado, Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments, arXiv:2003.03383 [INSPIRE].

  63. [63]

    H.-J. He, Y.-P. Kuang, Y.-H. Qi, B. Zhang, A. Belyaev, R.S. Chivukula et al., CERN LHC Signatures of New Gauge Bosons in Minimal Higgsless Model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [INSPIRE].

  64. [64]

    W. Chao, Z.-G. Si, Z.-z. Xing and S. Zhou, Correlative signatures of heavy Majorana neutrinos and doubly-charged Higgs bosons at the Large Hadron Collider, Phys. Lett. B 666 (2008) 451 [arXiv:0804.1265] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].

    Google Scholar 

  66. [66]

    Y. Bai and T.M.P. Tait, Searches with Mono-Leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss and T.J. Weiler, Searching for Dark Matter at the LHC with a Mono-Z, Phys. Rev. D 86 (2012) 096011 [arXiv:1209.0231] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    N. Zhou, D. Berge and D. Whiteson, Mono-everything: combined limits on dark matter production at colliders from multiple final states, Phys. Rev. D 87 (2013) 095013 [arXiv:1302.3619] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    M. Song, G. Li, W.-G. Ma, R.-Y. Zhang and J.-Y. Guo, Dark matter pair associated with a W boson production at the LHC in next-to-leading order QCD, JHEP 09 (2014) 069 [arXiv:1403.2142] [INSPIRE].

    Google Scholar 

  71. [71]

    N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: Effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, Phys. Dark Univ. 27 (2020) 100371 [arXiv:1507.00966] [INSPIRE].

  73. [73]

    M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].

  75. [75]

    J.A. Aguilar-Saavedra, J.A. Casas, J. Quilis and R. Ruiz de Austri, Multilepton dark matter signals, JHEP 04 (2020) 069 [arXiv:1911.03486] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    N. Beni et al., Further studies on the physics potential of an experiment using LHC neutrinos, J. Phys. G 47 (2020) 125004 [arXiv:2004.07828] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    S. Davidson and V. Sanz, Non-Standard Neutrino Interactions at Colliders, Phys. Rev. D 84 (2011) 113011 [arXiv:1108.5320] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    Neutrino Non-Standard Interactions: A Status Report SciPost Phys. Proc. 2 (2019) 001 [INSPIRE].

  79. [79]

    K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Non-Standard Interactions in Radiative Neutrino Mass Models, JHEP 03 (2020) 006 [arXiv:1907.09498] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    N.F. Bell, Y. Cai and R.K. Leane, Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. in Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge Bosons, SciPost Phys. 6 (2019) 038 [arXiv:1812.04067] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    S. Pandey, S. Karmakar and S. Rakshit, Strong constraints on non-standard neutrino interactions: LHC vs. IceCube, JHEP 11 (2019) 046 [arXiv:1907.07700] [INSPIRE].

  84. [84]

    Y. Farzan, A model for lepton flavor violating non-standard neutrino interactions, Phys. Lett. B 803 (2020) 135349 [arXiv:1912.09408] [INSPIRE].

    Article  Google Scholar 

  85. [85]

    L.J. Flores, N. Nath and E. Peinado, Non-standard neutrino interactions in U(1)’ model after COHERENT data, JHEP 06 (2020) 045 [arXiv:2002.12342] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    E. Alvarez, M. Estévez and R.M. Sandá Seoane, Z’-explorer: a simple tool to probe Z’ models against LHC data, arXiv:2005.05194 [INSPIRE].

  87. [87]

    D. Buarque Franzosi, M.T. Frandsen and I.M. Shoemaker, New or ν missing energy: Discriminating dark matter from neutrino interactions at the LHC, Phys. Rev. D 93 (2016) 095001 [arXiv:1507.07574] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    T. Han, J. Liao, H. Liu and D. Marfatia, Scalar and tensor neutrino interactions, JHEP 07 (2020) 207 [arXiv:2004.13869] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. 95 (1980) 461] [INSPIRE].

  91. [91]

    D. Aristizabal Sierra, M. Hirsch and S.G. Kovalenko, Leptoquarks: Neutrino masses and accelerator phenomenology, Phys. Rev. D 77 (2008) 055011 [arXiv:0710.5699] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    I. Doršner, S. Fajfer and N. Košnik, Leptoquark mechanism of neutrino masses within the grand unification framework, Eur. Phys. J. C 77 (2017) 417 [arXiv:1701.08322] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  94. [94]

    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  95. [95]

    T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  96. [96]

    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  97. [97]

    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  98. [98]

    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126 [arXiv:1711.03301] [INSPIRE].

  99. [99]

    CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].

  100. [100]

    ATLAS collaboration, Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2018) 180 [arXiv:1807.11471] [INSPIRE].

  101. [101]

    ATLAS collaboration, Search for dark matter at \( \sqrt{s} \) = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848] [INSPIRE].

  102. [102]

    CMS collaboration, Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 02 (2019) 074 [arXiv:1810.00196] [INSPIRE].

  103. [103]

    CMS collaboration, Search for high-mass resonances in final states with a lepton and missing transverse momentum at \( \sqrt{s} \) = 13 TeV, JHEP 06 (2018) 128 [arXiv:1803.11133] [INSPIRE].

  104. [104]

    ATLAS collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 100 (2019) 052013 [arXiv:1906.05609] [INSPIRE].

  105. [105]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  106. [106]

    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].

  108. [108]

    COHERENT collaboration, COHERENT collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ChuanLe Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.06668

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Sun, C. & Gao, J. Constraints on neutrino non-standard interactions from LHC data with large missing transverse momentum. J. High Energ. Phys. 2021, 33 (2021). https://doi.org/10.1007/JHEP02(2021)033

Download citation

Keywords

  • Neutrino Physics
  • Beyond Standard Model