Superheavy dark matter from string theory

Abstract

Explicit string models which can realize inflation and low-energy supersymmetry are notoriously difficult to achieve. Given that sequestering requires very specific configurations, supersymmetric particles are in general expected to be very heavy implying that the neutralino dark matter should be overproduced in a standard thermal history. However, in this paper we point out that this is generically not the case since early matter domination driven by string moduli can dilute the dark matter abundance down to the observed value. We argue that generic features of string compactifications, namely a high supersymmetry breaking scale and late time epochs of modulus domination, might imply superheavy neutralino dark matter with mass around 1010–1011 GeV. Interestingly, this is the right range to explain the recent detection of ultra-high-energy neutrinos by IceCube and ANITA via dark matter decay.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  2. [2]

    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  3. [3]

    Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  4. [4]

    R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng, GeV-scale thermal WIMPs: Not even slightly ruled out, Phys. Rev. D 98 (2018) 023016 [arXiv:1805.10305] [INSPIRE].

  5. [5]

    M. Kamionkowski and M.S. Turner, Thermal relics: do we know their abundances?, Phys. Rev. D 42 (1990) 3310 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, arXiv:2006.16182 [INSPIRE].

  7. [7]

    G. Kane, K. Sinha and S. Watson, Cosmological Moduli and the Post-Inflationary Universe: A Critical Review, Int. J. Mod. Phys. D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao and S. Watson, Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, Moduli Vacuum Misalignment and Precise Predictions in String Inflation, JCAP 08 (2016) 006 [arXiv:1604.08512] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

  12. [12]

    R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].

  13. [13]

    R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Nonthermal dark matter in string compactifications, Phys. Rev. D 88 (2013) 095015 [arXiv:1307.5086] [INSPIRE].

  14. [14]

    R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Correlation between Dark Matter and Dark Radiation in String Compactifications, JCAP 10 (2014) 002 [arXiv:1401.4364] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking, and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    I. Broeckel, M. Cicoli, A. Maharana, K. Singh and K. Sinha, Moduli Stabilisation and the Statistics of SUSY Breaking in the Landscape, JHEP 10 (2020) 015 [arXiv:2007.04327] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L. Heurtier, Y. Mambrini and M. Pierre, Dark matter interpretation of the ANITA anomalous events, Phys. Rev. D 99 (2019) 095014 [arXiv:1902.04584] [INSPIRE].

  22. [22]

    L. Delle Rose, A.E. Faraggi, C. Marzo and J. Rizos, Wilsonian dark matter in string derived Zmodel, Phys. Rev. D 96 (2017) 055025 [arXiv:1704.02579] [INSPIRE].

  23. [23]

    C. Corianò, A.E. Faraggi and M. Plümacher, Stable superstring relics and ultrahigh-energy cosmic rays, Nucl. Phys. B 614 (2001) 233 [hep-ph/0107053] [INSPIRE].

  24. [24]

    M. Kawasaki, T. Moroi and T. Yanagida, Constraint on the reheating temperature from the decay of the Polonyi field, Phys. Lett. B 370 (1996) 52 [hep-ph/9509399] [INSPIRE].

  25. [25]

    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

  26. [26]

    A.L. Erickcek, The Dark Matter Annihilation Boost from Low-Temperature Reheating, Phys. Rev. D 92 (2015) 103505 [arXiv:1504.03335] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

  28. [28]

    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A Non-thermal WIMP Miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].

  29. [29]

    B. Dutta, L. Leblond and K. Sinha, Mirage in the Sky: Non-thermal Dark Matter, Gravitino Problem, and Cosmic Ray Anomalies, Phys. Rev. D 80 (2009) 035014 [arXiv:0904.3773] [INSPIRE].

  30. [30]

    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

  31. [31]

    T. Higaki and F. Takahashi, Dark Radiation and Dark Matter in Large Volume Compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Cicoli and F. Muia, General Analysis of Dark Radiation in Sequestered String Models, JHEP 12 (2015) 152 [arXiv:1511.05447] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. [33]

    M. Cicoli and G.A. Piovano, Reheating and Dark Radiation after Fibre Inflation, JCAP 02 (2019) 048 [arXiv:1809.01159] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A.R. Liddle and S.M. Leach, How long before the end of inflation were observable perturbations produced?, Phys. Rev. D 68 (2003) 103503 [astro-ph/0305263] [INSPIRE].

  35. [35]

    T. Rehagen and G.B. Gelmini, Low reheating temperatures in monomial and binomial inflationary potentials, JCAP 06 (2015) 039 [arXiv:1504.03768] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    D. Roest, Universality classes of inflation, JCAP 01 (2014) 007 [arXiv:1309.1285] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  38. [38]

    R. Allahverdi, K. Dutta and A. Maharana, Constraining Non-thermal Dark Matter by CMB, JCAP 10 (2018) 038 [arXiv:1808.02659] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  46. [46]

    M. Cicoli, F. Quevedo and R. Valandro, de Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].

  47. [47]

    M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, de Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].

  48. [48]

    D. Gallego, M.C.D. Marsh, B. Vercnocke and T. Wrase, A New Class of de Sitter Vacua in Type IIB Large Volume Compactifications, JHEP 10 (2017) 193 [arXiv:1707.01095] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    M. Cicoli and A. Mazumdar, Inflation in string theory: A Graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].

  51. [51]

    C.P. Burgess, M. Cicoli, M. Gomez-Reino, F. Quevedo, G. Tasinato and I. Zavala, Non-standard primordial fluctuations and nonGaussianity in string inflation, JHEP 08 (2010) 045 [arXiv:1005.4840] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY Breaking Terms for Chiral Matter in IIB String Compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    S.P. Martin and J.D. Wells, Chiral symmetry breaking and effective Lagrangians for softly broken supersymmetric QCD, Phys. Rev. D 58 (1998) 115013 [hep-th/9801157] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  55. [55]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  56. [56]

    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  57. [57]

    K. Harigaya and K. Mukaida, Thermalization after/during Reheating, JHEP 05 (2014) 006 [arXiv:1312.3097] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    K. Mukaida and M. Yamada, Thermalization Process after Inflation and Effective Potential of Scalar Field, JCAP 02 (2016) 003 [arXiv:1506.07661] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    R. Allahverdi and M. Drees, Thermalization after inflation and production of massive stable particles, Phys. Rev. D 66 (2002) 063513 [hep-ph/0205246] [INSPIRE].

  60. [60]

    K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].

  61. [61]

    M.A.G. Garcia and M.A. Amin, Prethermalization production of dark matter, Phys. Rev. D 98 (2018) 103504 [arXiv:1806.01865] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    K. Harigaya, K. Mukaida and M. Yamada, Dark Matter Production during the Thermalization Era, JHEP 07 (2019) 059 [arXiv:1901.11027] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    R. Allahverdi and J.K. Osiński, Nonthermal dark matter from modified early matter domination, Phys. Rev. D 99 (2019) 083517 [arXiv:1812.10522] [INSPIRE].

  64. [64]

    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv:0704.1079] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. [66]

    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    M. Cicoli, D. Ciupke, V.A. Diaz, V. Guidetti, F. Muia and P. Shukla, Chiral Global Embedding of Fibre Inflation Models, JHEP 11 (2017) 207 [arXiv:1709.01518] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  70. [70]

    M. Cicoli, I. Garcìa-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, Global Orientifolded Quivers with Inflation, JHEP 11 (2017) 134 [arXiv:1706.06128] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].

  72. [72]

    P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. [73]

    J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. [74]

    M. Cicoli, K. Dutta and A. Maharana, N-flation with Hierarchically Light Axions in String Compactifications, JCAP 08 (2014) 012 [arXiv:1401.2579] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    C.P. Burgess, M. Cicoli, D. Ciupke, S. Krippendorf and F. Quevedo, UV Shadows in EFTs: Accidental Symmetries, Robustness and No-Scale Supergravity, Fortsch. Phys. 68 (2020) 2000076 [arXiv:2006.06694] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  78. [78]

    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. [80]

    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. [81]

    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor Bröckel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.03573

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allahverdi, R., Bröckel, I., Cicoli, M. et al. Superheavy dark matter from string theory. J. High Energ. Phys. 2021, 26 (2021). https://doi.org/10.1007/JHEP02(2021)026

Download citation

Keywords

  • Strings and branes phenomenology
  • Supersymmetry Phenomenology