Near-extremal fluid mechanics

Abstract

We analyse near-extremal black brane configurations in asymptotically AdS4 spacetime with the temperature T, chemical potential μ, and three-velocity uν, varying slowly. We consider a low-temperature limit where the rate of variation is much slower than μ, but much bigger than T. This limit is different from the one considered for conventional fluid-mechanics in which the rate of variation is much smaller than both T, μ. We find that in our limit, as well, the Einstein-Maxwell equations can be solved in a systematic perturbative expansion. At first order, in the rate of variation, the resulting constitutive relations for the stress tensor and charge current are local in the boundary theory and can be easily calculated. At higher orders, we show that these relations become non-local in time but the perturbative expansion is still valid. We find that there are four linearised modes in this limit; these are similar to the hydrodynamic modes found in conventional fluid mechanics with the same dispersion relations. We also study some linearised time independent perturbations exhibiting attractor behaviour at the horizon — these arise in the presence of external driving forces in the boundary theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    R. Loganayagam, Entropy Current in Conformal Hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi and S.R. Wadia, Forced Fluid Dynamics from Gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  8. [8]

    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    V.E. Hubeny, M. Rangamani, S. Minwalla and M. Van Raamsdonk, The fluid-gravity correspondence: The membrane at the end of the universe, Int. J. Mod. Phys. D 17 (2009) 2571 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A Theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Rangamani, Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Theoretical Advanced Study Institute in Elementary Particle Physics: String theory and its Applications: From meV to the Planck Scale, (2012) pp. 348–383, arXiv:1107.5780 [INSPIRE].

  15. [15]

    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    J.R. David, M. Mahato and S.R. Wadia, Hydrodynamics from the D1-brane, JHEP 04 (2009) 042 [arXiv:0901.2013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    D.T. Son and A.O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals - A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: A Pedestrian’s Guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    MATH  Article  Google Scholar 

  24. [24]

    G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press, U.K. (2014), https://doi.org/10.1017/CBO9781139136747 [arXiv:1101.0618] [INSPIRE].

  26. [26]

    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  27. [27]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  28. [28]

    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  31. [31]

    A.Y. Kitaev, A simple model of quantum holography, talks presented at the programme Entanglement in Strongly-Correlated Quantum Matter, Kavli Intitute for Theoretical Physics, University of California, Santa Barbara, U.S.A. (2015), part I and part II.

  32. [32]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi and V. Vishal, On the Dynamics of Near-Extremal Black Holes, JHEP 09 (2018) 048 [arXiv:1802.09547] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    U. Moitra, S.P. Trivedi and V. Vishal, Extremal and near-extremal black holes and near-CFT1, JHEP 07 (2019) 055 [arXiv:1808.08239] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  36. [36]

    U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, Jackiw-Teitelboim Gravity and Rotating Black Holes, JHEP 11 (2019) 047 [arXiv:1905.10378] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, Jackiw-Teitelboim Model Coupled to Conformal Matter in the Semi-Classical Limit, JHEP 04 (2020) 199 [arXiv:1908.08523] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    G. Sárosi, AdS2 holography and the SYK model, PoS Modave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE].

  39. [39]

    V. Rosenhaus, An introduction to the SYK model, J. Phys. A 52 (2019) 323001 [arXiv:1807.03334] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  42. [42]

    M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  44. [44]

    R.A. Davison and N.K. Kaplis, Bosonic excitations of the AdS4 Reissner-Nordstrom black hole, JHEP 12 (2011) 037 [arXiv:1111.0660] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  45. [45]

    R.A. Davison and A. Parnachev, Hydrodynamics of cold holographic matter, JHEP 06 (2013) 100 [arXiv:1303.6334] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    J. Erdmenger, D. Fernandez, P. Goulart and P. Witkowski, Conductivities from attractors, JHEP 03 (2017) 147 [arXiv:1611.09381] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    J.-H. Oh, Small Amplitude Forced Fluid Dynamics from Gravity at T = 0, Eur. Phys. J. C 71 (2011) 1841 [arXiv:1012.1040] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

  49. [49]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    C.P. Herzog, The Hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

  53. [53]

    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes, and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    C.P. Herzog, The Sound of M-theory, Phys. Rev. D 68 (2003) 024013 [hep-th/0302086] [INSPIRE].

  56. [56]

    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].

  58. [58]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

  63. [63]

    P. Benincasa, A. Buchel and A.O. Starinets, Sound waves in strongly coupled non-conformal gauge theory plasma, Nucl. Phys. B 733 (2006) 160 [hep-th/0507026] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    E. Shuryak, S.-J. Sin and I. Zahed, A Gravity dual of RHIC collisions, J. Korean Phys. Soc. 50 (2007) 384 [hep-th/0511199] [INSPIRE].

    Article  Google Scholar 

  65. [65]

    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

  66. [66]

    P. Benincasa, A. Buchel and R. Naryshkin, The Shear viscosity of gauge theory plasma with chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  67. [67]

    J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016 [hep-th/0601144] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    D.T. Son and A.O. Starinets, Hydrodynamics of r-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    O. Saremi, The Viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [INSPIRE].

  71. [71]

    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

  73. [73]

    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. [74]

    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].

  75. [75]

    S. Nakamura and S.-J. Sin, A Holographic dual of hydrodynamics, JHEP 09 (2006) 020 [hep-th/0607123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. [76]

    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].

  77. [77]

    J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. [78]

    S. Nakamura, Y. Seo, S.-J. Sin and K.P. Yogendran, A New Phase at Finite Quark Density from AdS/CFT, J. Korean Phys. Soc. 52 (2008) 1734 [hep-th/0611021] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

  80. [80]

    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality, and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

  81. [81]

    M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev. D 76 (2007) 025027 [hep-th/0703243] [INSPIRE].

  82. [82]

    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].

  83. [83]

    S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].

  84. [84]

    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  85. [85]

    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  87. [87]

    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

  88. [88]

    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

  90. [90]

    S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  91. [91]

    D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

  92. [92]

    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

  93. [93]

    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

  94. [94]

    S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to eta/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

  96. [96]

    A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [INSPIRE].

  97. [97]

    M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP 10 (2008) 063 [arXiv:0806.4602] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  98. [98]

    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  99. [99]

    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [INSPIRE].

    ADS  Article  Google Scholar 

  101. [101]

    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

  102. [102]

    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [INSPIRE].

  103. [103]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  104. [104]

    M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  105. [105]

    A. Buchel, R.C. Myers and A. Sinha, Beyond eta/s = 1/4 pi, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [INSPIRE].

  107. [107]

    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  108. [108]

    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

  109. [109]

    J. de Boer, M. Kulaxizi and A. Parnachev, AdS7/CFT6, Gauss-Bonnet Gravity, and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  110. [110]

    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  111. [111]

    A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

  112. [112]

    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  113. [113]

    R.A. Davison and A.O. Starinets, Holographic zero sound at finite temperature, Phys. Rev. D 85 (2012) 026004 [arXiv:1109.6343] [INSPIRE].

  114. [114]

    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

    ADS  Article  Google Scholar 

  115. [115]

    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  116. [116]

    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  117. [117]

    P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  118. [118]

    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  119. [119]

    L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Second Edition): Volume 6 of Course of Theoretical Physics, Pergamon (1987).

  120. [120]

    M. Abramowitz and I.A. Stegun eds., Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables, United States Department of Commerce, National Bureau of Standards, U.S.A. (1972).

  121. [121]

    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  122. [122]

    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  123. [123]

    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  124. [124]

    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  125. [125]

    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  126. [126]

    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Extremal black holes in supergravity, Lect. Notes Phys. 737 (2008) 661 [hep-th/0611345] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  127. [127]

    F. Larsen, The Attractor Mechanism in Five Dimensions, Lect. Notes Phys. 755 (2008) 249 [hep-th/0608191] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  128. [128]

    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  129. [129]

    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, U.K. (2011), https://doi.org/10.1017/CBO9780511524646 [INSPIRE].

  130. [130]

    R.M. Wald, General Relativity, Chicago University Press, Chicago, U.S.A. (1984), https://doi.org/10.7208/chicago/9780226870373.001.0001.

    Google Scholar 

  131. [131]

    S. Minwalla et al., in preparation.

  132. [132]

    R. Brito, V. Cardoso and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Upamanyu Moitra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.00016

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moitra, U., Sake, S.K. & Trivedi, S.P. Near-extremal fluid mechanics. J. High Energ. Phys. 2021, 21 (2021). https://doi.org/10.1007/JHEP02(2021)021

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Classical Theories of Gravity
  • Holography and condensed matter physics (AdS/CMT)