The integrable (hyper)eclectic spin chain

Abstract

We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of \( \mathcal{N} \) = 4 Super Yang-Mills Theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.C. Ipsen, M. Staudacher and L. Zippelius, The one-loop spectral problem of strongly twisted N = 4 super Yang-Mills theory, JHEP 04 (2019) 044 [arXiv:1812.08794] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain, Z. Phys. 71 (1931) 205 [INSPIRE].

  3. [3]

    Ö. Gürdoğan and V. Kazakov, New integrable 4D quantum field theories from strongly deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

  4. [4]

    C. Sieg and M. Wilhelm, On a CFT limit of planar γi-deformed N = 4 SYM theory, Phys. Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-L. Zhong, Yangian symmetry for bi-scalar loop amplitudes, JHEP 05 (2018) 003 [arXiv:1704.01967] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    N. Gromov, V. Kazakov, G. Korchemsky, S. Negro and G. Sizov, Integrability of conformal fishnet theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-L. Zhong, Yangian symmetry for fishnet Feynman graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4 supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    V. Kazakov, Quantum spectral curve of γ-twisted N = 4 SYM theory and fishnet CFT, Rev. Math. Phys. 30 (2018) 1840010 [arXiv:1802.02160] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. [11]

    N. Gromov, V. Kazakov and G. Korchemsky, Exact correlation functions in conformal fishnet theory, JHEP 08 (2019) 123 [arXiv:1808.02688] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Les Houches school of physics: astrophysical sources of gravitational radiation, (1996), pg. 149 [hep-th/9605187] [INSPIRE].

  13. [13]

    R.I. Nepomechie, A spin chain primer, Int. J. Mod. Phys. B 13 (1999) 2973 [hep-th/9810032] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    F. Levkovich-Maslyuk, The Bethe ansatz, J. Phys. A 49 (2016) 323004 [arXiv:1606.02950] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  15. [15]

    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    A.M. Gainutdinov and R.I. Nepomechie, Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity, Nucl. Phys. B 909 (2016) 796 [arXiv:1603.09249] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changrim Ahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.14515

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, C., Staudacher, M. The integrable (hyper)eclectic spin chain. J. High Energ. Phys. 2021, 19 (2021). https://doi.org/10.1007/JHEP02(2021)019

Download citation

Keywords

  • Bethe Ansatz
  • Integrable Field Theories
  • AdS-CFT Correspondence