On the time evolution of cosmological correlators

Abstract

Developing our understanding of how correlations evolve during inflation is crucial if we are to extract information about the early Universe from our late-time observables. To that end, we revisit the time evolution of scalar field correlators on de Sitter spacetime in the Schrödinger picture. By direct manipulation of the Schrödinger equation, we write down simple “equations of motion” for the coefficients which determine the wavefunction. Rather than specify a particular interaction Hamiltonian, we assume only very basic properties (unitarity, de Sitter invariance and locality) to derive general consequences for the wavefunction’s evolution. In particular, we identify a number of “constants of motion” — properties of the initial state which are conserved by any unitary dynamics — and show how this can be used to partially fix the cubic and quartic wavefunction coefficients at weak coupling. We further constrain the time evolution by deriving constraints from the de Sitter isometries and show that these reduce to the familiar conformal Ward identities at late times. Finally, we show how the evolution of a state from the conformal boundary into the bulk can be described via a number of “transfer functions” which are analytic outside the horizon for any local interaction. These objects exhibit divergences for particular values of the scalar mass, and we show how such divergences can be removed by a renormalisation of the boundary wavefunction — this is equivalent to performing a “Boundary Operator Expansion” which expresses the bulk operators in terms of regulated boundary operators. Altogether, this improved understanding of the wavefunction in the bulk of de Sitter complements recent advances from a purely boundary perspective, and reveals new structure in cosmological correlators.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, S-matrix theory of strong interactions, Cambridge University Press (1966).

  2. [2]

    G.F. Chew, S-matrix theory of strong interactions, Benjamin, New York (1961).

    Google Scholar 

  3. [3]

    P. Benincasa, New structures in scattering amplitudes: a review, Int. J. Mod. Phys. A 29 (2014) 1430005 [arXiv:1312.5583] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

  5. [5]

    C. Cheung, TASI Lectures on Scattering Amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016), Boulder, CO, U.S.A., June 6–July 1, 2016, R. Essig and I. Low, eds., pp. 571–623 (2018) [DOI] [arXiv:1708.03872] [INSPIRE].

  6. [6]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  8. [8]

    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    J.J. Halliwell and S.W. Hawking, The Origin of Structure in the Universe, Phys. Rev. D 31 (1985) 1777 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  16. [16]

    G.L. Pimentel, Inflationary Consistency Conditions from a Wavefunctional Perspective, JHEP 02 (2014) 124 [arXiv:1309.1793] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation, JHEP 07 (2014) 011 [arXiv:1401.1426] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Shapes of gravity: Tensor non-Gaussianity and massive spin-2 fields, JHEP 10 (2019) 182 [arXiv:1812.07571] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the Horizon, JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    D. Baumann, D. Green and R.A. Porto, B-modes and the Nature of Inflation, JCAP 01 (2015) 016 [arXiv:1407.2621] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    D. Baumann, D. Green, H. Lee and R.A. Porto, Signs of Analyticity in Single-Field Inflation, Phys. Rev. D 93 (2016) 023523 [arXiv:1502.07304] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    T. Grall and S. Melville, Inflation in motion: unitarity constraints in effective field theories with (spontaneously) broken Lorentz symmetry, JCAP 09 (2020) 017 [arXiv:2005.02366] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    H. Goodhew, S. Jazayeri and E. Pajer, The Cosmological Optical Theorem, arXiv:2009.02898 [INSPIRE].

  25. [25]

    I. Antoniadis, P.O. Mazur and E. Mottola, Conformal Invariance, Dark Energy, and CMB Non-Gaussianity, JCAP 09 (2012) 024 [arXiv:1103.4164] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  28. [28]

    N. Kundu, A. Shukla and S.P. Trivedi, Constraints from Conformal Symmetry on the Three Point Scalar Correlator in Inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    N. Kundu, A. Shukla and S.P. Trivedi, Ward Identities for Scale and Special Conformal Transformations in Inflation, JHEP 01 (2016) 046 [arXiv:1507.06017] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  31. [31]

    N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105 [arXiv:1811.00024] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP 02 (2020) 098 [arXiv:1907.01143] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP 12 (2020) 204 [arXiv:1910.14051] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  35. [35]

    S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    R. Jackiw, Analysis on Infinite Dimensional Manifolds — Schrodinger Representation for Quantized Fields, Vol. Field Theory and Particle Physics, 5th Jorge Swieca Summer School, Brazil, World Scientific (1989) [https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/056/22056871.pdf].

  37. [37]

    M. Lüscher, Schrödinger representation in quantum field theory, Nucl. Phys. B 254 (1985) 52 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    D.V. Long and G.M. Shore, The Schrödinger wave functional and vacuum states in curved space-time, Nucl. Phys. B 530 (1998) 247 [hep-th/9605004] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  39. [39]

    T. Leonhardt, R. Manvelyan and W. Rühl, The Group approach to AdS space propagators, Nucl. Phys. B 667 (2003) 413 [hep-th/0305235] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    U. Moschella and R. Schaeffer, Quantum theory on Lobatchevski spaces, Class. Quant. Grav. 24 (2007) 3571 [arXiv:0709.2795] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP 03 (2016) 066 [arXiv:1510.08442] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    T. Cohen and D. Green, Soft de Sitter Effective Theory, JHEP 12 (2020) 041 [arXiv:2007.03693] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    A.J. Tolley and M. Wyman, The Gelaton Scenario: Equilateral non-Gaussianity from multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Effective theories of single field inflation when heavy fields matter, JHEP 05 (2012) 066 [arXiv:1201.6342] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    S. Cespedes, V. Atal and G.A. Palma, On the importance of heavy fields during inflation, JCAP 05 (2012) 008 [arXiv:1201.4848] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    C. Cheung, A.L. Fitzpatrick, J. Kaplan and L. Senatore, On the consistency relation of the 3-point function in single field inflation, JCAP 02 (2008) 021 [arXiv:0709.0295] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051 [hep-th/0307026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  53. [53]

    P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [arXiv:1112.1967] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  56. [56]

    I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP 07 (2013) 015 [arXiv:1211.5482] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    D. Green and A. Premkumar, Dynamical RG and Critical Phenomena in de Sitter Space, JHEP 04 (2020) 064 [arXiv:2001.05974] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    V. Gorbenko and L. Senatore, λφ4 in dS, arXiv:1911.00022 [INSPIRE].

  59. [59]

    M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, JCAP 12 (2020) 006 [arXiv:1911.00564] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    M. Baumgart and R. Sundrum, de Sitter Diagrammar and the Resummation of Time, JHEP 07 (2020) 119 [arXiv:1912.09502] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes Phys. 246 (1986) 107 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    M.P. Hertzberg and J.A. Litterer, Symmetries from locality. I. Electromagnetism and charge conservation, Phys. Rev. D 102 (2020) 025022 [arXiv:2005.01731] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    M.P. Hertzberg, J.A. Litterer and M. Sandora, Symmetries from locality. II. Gravitation and Lorentz boosts, Phys. Rev. D 102 (2020) 025023 [arXiv:2005.01744] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    E. Pajer, D. Stefanyszyn and J. Supeł, The Boostless Bootstrap: Amplitudes without Lorentz boosts, JHEP 12 (2020) 198 [arXiv:2007.00027] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    D. Baumann, D. Green and T. Hartman, Dynamical Constraints on RG Flows and Cosmology, JHEP 12 (2019) 134 [arXiv:1906.10226] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott Melville.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.07874

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Céspedes, S., Davis, AC. & Melville, S. On the time evolution of cosmological correlators. J. High Energ. Phys. 2021, 12 (2021). https://doi.org/10.1007/JHEP02(2021)012

Download citation

Keywords

  • Space-Time Symmetries
  • Classical Theories of Gravity
  • Effective Field Theories