Swampland Conjectures for strings and membranes

Abstract

Swampland criteria like the Weak Gravity Conjecture should not only apply to particles, but also to other lower-codimension charged objects in 4d EFTs like strings and membranes. However, the description of the latter is in general subtle due to their large backreaction effects. In the context of 4d \( \mathcal{N} \) = 1 EFTs, we consider \( \frac{1}{2} \)BPS strings and membranes which are fundamental, in the sense that they cannot be resolved within the EFT regime. We argue that, if interpreted from the EFT viewpoint, the 4d backreaction of these objects translates into a classical RG flow of their couplings. Constraints on the UV charges and tensions get then translated to constraints on the axionic kinetic terms and scalar potential of the EFT. This uncovers new relations among the Swampland Conjectures, which become interconnected by the physical properties of low-codimension objects. In particular, using that string RG flows describe infinite field distance limits, we show that the WGC for strings implies the Swampland Distance Conjecture. Similarly, WGC-saturating membranes generate a scalar potential satisfying the de Sitter Conjecture.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. [2]

    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

  3. [3]

    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

    MathSciNet  Google Scholar 

  4. [4]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys. 21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. [6]

    B. Freivogel and M. Kleban, Vacua Morghulis, arXiv:1610.04564 [INSPIRE].

  7. [7]

    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion Monodromy and the Weak Gravity Conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. [8]

    A. Hebecker, F. Rompineve and A. Westphal, Axion Monodromy and the Weak Gravity Conjecture, JHEP 04 (2016) 157 [arXiv:1512.03768] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. [9]

    N. Craig, I. Garcia Garcia and S. Koren, Discrete Gauge Symmetries and the Weak Gravity Conjecture, JHEP 05 (2019) 140 [arXiv:1812.08181] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. [10]

    A. Font, A. Herráez and L.E. Ibáñez, The Swampland Distance Conjecture and Towers of Tensionless Branes, JHEP 08 (2019) 044 [arXiv:1904.05379] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. [11]

    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  12. [12]

    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. [13]

    T.W. Grimm, C. Li and I. Valenzuela, Asymptotic Flux Compactifications and the Swampland, JHEP 06 (2020) 009 [Erratum ibid. 01 (2021) 007] [arXiv:1910.09549] [INSPIRE].

  14. [14]

    W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].

  15. [15]

    B. Michel, E. Mintun, J. Polchinski, A. Puhm and P. Saad, Remarks on brane and antibrane dynamics, JHEP 09 (2015) 021 [arXiv:1412.5702] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. [16]

    J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].

  17. [17]

    S. Lanza, F. Marchesano, L. Martucci and I. Valenzuela, The EFT stringy viewpoint on large distances, to appear (2020).

  18. [18]

    E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP 08 (2017) 034 [arXiv:1705.04328] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. [19]

    B. Heidenreich, M. Reece and T. Rudelius, Repulsive Forces and the Weak Gravity Conjecture, JHEP 10 (2019) 055 [arXiv:1906.02206] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. [20]

    S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings from Infinite Distance Limits, arXiv:1910.01135 [INSPIRE].

  21. [21]

    T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. [22]

    B. Heidenreich, M. Reece and T. Rudelius, The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J. C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Herraez, A Note on Membrane Interactions and the Scalar potential, JHEP 10 (2020) 009 [arXiv:2006.01160] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, Flux String Vacua, Axion Stability and Naturalness, JHEP 12 (2015) 119 [arXiv:1507.06793] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. [25]

    F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP 09 (2016) 062 [arXiv:1606.00508] [INSPIRE].

    ADS  MATH  Google Scholar 

  26. [26]

    A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The Type IIA Flux Potential, 4-forms and Freed-Witten anomalies, JHEP 09 (2018) 018 [arXiv:1802.05771] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. [27]

    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in Supergravity and Flux Compactifications, Eur. Phys. J. C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms, Supersymmetry and String Compactifications, Phys. Part. Nucl. 49 (2018) 823 [arXiv:1712.09366] [INSPIRE].

    MATH  Google Scholar 

  29. [29]

    I. Bandos, F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms, dualities and membranes in four-dimensional supergravity, JHEP 07 (2018) 028 [arXiv:1803.01405] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. [30]

    S. Lanza, F. Marchesano, L. Martucci and D. Sorokin, How many fluxes fit in an EFT?, JHEP 10 (2019) 110 [arXiv:1907.11256] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    S. Lanza, Exploring the Landscape of effective field theories, Ph.D. Thesis, Università degli Studi di Padova (2019) [arXiv:1912.08935] [INSPIRE].

  32. [32]

    J. Polchinski, S. Chaudhuri and C.V. Johnson, Notes on D-branes, hep-th/9602052 [INSPIRE].

  33. [33]

    A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and Solitons, Nucl. Phys. B 340 (1990) 33 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    A. Buonanno and T. Damour, Effective action and tension renormalization for cosmic and fundamental strings, Phys. Lett. B 432 (1998) 51 [hep-th/9803025] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    J. Garriga and A. Megevand, Coincident brane nucleation and the neutralization of Lambda, Phys. Rev. D 69 (2004) 083510 [hep-th/0310211] [INSPIRE].

  37. [37]

    J.D. Brown and C. Teitelboim, Neutralization of the Cosmological Constant by Membrane Creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. [38]

    J. Polchinski, Monopoles, duality, and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].

  39. [39]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B 337 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    M. Cvetič, S. Griffies and S.-J. Rey, Static domain walls in N = 1 supergravity, Nucl. Phys. B 381 (1992) 301 [hep-th/9201007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    M. Cvetič and H.H. Soleng, Supergravity domain walls, Phys. Rept. 282 (1997) 159 [hep-th/9604090] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. [43]

    A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A.D. Linde, Domain walls, near-BPS bubbles, and probabilities in the landscape, Phys. Rev. D 74 (2006) 086010 [hep-th/0605266] [INSPIRE].

  44. [44]

    E. Palti, C. Vafa and T. Weigand, Supersymmetric Protection and the Swampland, JHEP 06 (2020) 168 [arXiv:2003.10452] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. [45]

    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  47. [47]

    I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special Points of Inflation in Flux Compactifications, Nucl. Phys. B 899 (2015) 414 [arXiv:1412.5537] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    T.W. Grimm, C. Li and E. Palti, Infinite Distance Networks in Field Space and Charge Orbits, JHEP 03 (2019) 016 [arXiv:1811.02571] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    P. Corvilain, T.W. Grimm and I. Valenzuela, The Swampland Distance Conjecture for Kähler moduli, JHEP 08 (2019) 075 [arXiv:1812.07548] [INSPIRE].

    ADS  MATH  Google Scholar 

  50. [50]

    S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. [51]

    S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings, Duality and Weak Coupling Limits for Two-Form Fields, arXiv:1904.06344 [INSPIRE].

  52. [52]

    M. Reece, Photon Masses in the Landscape and the Swampland, JHEP 07 (2019) 181 [arXiv:1808.09966] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. [53]

    T. Rudelius, Constraints on Axion Inflation from the Weak Gravity Conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. [54]

    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. [55]

    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. [56]

    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the Swamp: Evading the Weak Gravity Conjecture with F-term Winding Inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].

    ADS  MATH  Google Scholar 

  57. [57]

    S. Katz, H.-C. Kim, H.-C. Tarazi and C. Vafa, Swampland Constraints on 5d \( \mathcal{N} \) = 1 Supergravity, JHEP 07 (2020) 080 [arXiv:2004.14401] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. [58]

    W. Schmid, Variation of hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973) 211.

    ADS  MathSciNet  MATH  Google Scholar 

  59. [59]

    T.W. Grimm, F. Ruehle and D. van de Heisteeg, Classifying Calabi-Yau threefolds using infinite distance limits, arXiv:1910.02963 [INSPIRE].

  60. [60]

    S. Cecotti, Special Geometry and the Swampland, JHEP 09 (2020) 147 [arXiv:2004.06929] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. [61]

    M. Berasaluce-Gonzalez, P.G. Cámara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP 04 (2013) 138 [arXiv:1211.5317] [INSPIRE].

    ADS  MATH  Google Scholar 

  62. [62]

    F. Marchesano, G. Shiu and A.M. Uranga, F-term Axion Monodromy Inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    E. Cattani and A. Kaplan, Polarized mixed hodge structures and the local monodromy of a variation of hodge structure, Invent. Math. 67 (1982) 101.

    ADS  MathSciNet  MATH  Google Scholar 

  64. [64]

    E. Cattani and A. Kaplan, Degenerating variations of hodge structure, in Théorie de Hodge — Luminy, Juin 1987, Astérisque, no. 179-180, pp. 67–96, Société mathématique de France (1989).

  65. [65]

    N. Gendler and I. Valenzuela, Merging the Weak Gravity and Distance Conjectures Using BPS Extremal Black Holes, arXiv:2004.10768 [INSPIRE].

  66. [66]

    M. Cvetič, S. Griffies and S.-J. Rey, Nonperturbative stability of supergravity and superstring vacua, Nucl. Phys. B 389 (1993) 3 [hep-th/9206004] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  67. [67]

    M. Cvetič and S. Griffies, Domain walls in N = 1 supergravity, in International Symposium on Black holes, Membranes, Wormholes and Superstrings, pp. 203–219 (1992) [hep-th/9209117] [INSPIRE].

  68. [68]

    P. Mayr, Mirror symmetry, N = 1 superpotentials and tensionless strings on Calabi-Yau four folds, Nucl. Phys. B 494 (1997) 489 [hep-th/9610162] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  69. [69]

    F. Baume, F. Marchesano and M. Wiesner, Instanton Corrections and Emergent Strings, JHEP 04 (2020) 174 [arXiv:1912.02218] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  70. [70]

    L. Martucci, Warped Kähler potentials and fluxes, JHEP 01 (2017) 056 [arXiv:1610.02403] [INSPIRE].

    ADS  MATH  Google Scholar 

  71. [71]

    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic Inflation and String Theory, JHEP 01 (2015) 128 [arXiv:1411.5380] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. [72]

    D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. [73]

    S. Bielleman, L.E. Ibáñez, F.G. Pedro, I. Valenzuela and C. Wieck, The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials, JHEP 05 (2016) 095 [arXiv:1602.00699] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. [74]

    A. Landete, F. Marchesano, G. Shiu and G. Zoccarato, Flux Flattening in Axion Monodromy Inflation, JHEP 06 (2017) 071 [arXiv:1703.09729] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. [76]

    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  77. [77]

    S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. [78]

    C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

  79. [79]

    S.-J. Lee, W. Lerche and T. Weigand, Modular Fluxes, Elliptic Genera, and Weak Gravity Conjectures in Four Dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  80. [80]

    M. Enríquez Rojo and E. Plauschinn, Swampland conjectures for type IIB orientifolds with closed-string U(1)s, JHEP 07 (2020) 026 [arXiv:2002.04050] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  81. [81]

    D. Klaewer and E. Palti, Super-Planckian Spatial Field Variations and Quantum Gravity, JHEP 01 (2017) 088 [arXiv:1610.00010] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  82. [82]

    A. Joshi and A. Klemm, Swampland Distance Conjecture for One-Parameter Calabi-Yau Threefolds, JHEP 08 (2019) 086 [arXiv:1903.00596] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  83. [83]

    T.W. Grimm and D. Van De Heisteeg, Infinite Distances and the Axion Weak Gravity Conjecture, JHEP 03 (2020) 020 [arXiv:1905.00901] [INSPIRE].

  84. [84]

    F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP 08 (2019) 088 [arXiv:1904.04848] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  85. [85]

    F. Xu, On TCS G2 manifolds and 4D emergent strings, JHEP 10 (2020) 045 [arXiv:2006.02350] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  86. [86]

    P. Draper and S. Farkas, Transplanckian Censorship and the Local Swampland Distance Conjecture, JHEP 01 (2020) 133 [arXiv:1910.04804] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  87. [87]

    P. Draper and S. Farkas, Gravitational Instabilities and Censorship of Large Scalar Field Excursions, JHEP 05 (2019) 158 [arXiv:1901.00515] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  88. [88]

    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP 05 (2019) 176 [arXiv:1812.05016] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  89. [89]

    H. Geng, S. Grieninger and A. Karch, Entropy, Entanglement and Swampland Bounds in DS/dS, JHEP 06 (2019) 105 [arXiv:1904.02170] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  90. [90]

    H. Geng, Distance Conjecture and De-Sitter Quantum Gravity, Phys. Lett. B 803 (2020) 135327 [arXiv:1910.03594] [INSPIRE].

    MathSciNet  Google Scholar 

  91. [91]

    Q. Bonnefoy, L. Ciambelli, D. Lüst and S. Lüst, Infinite Black Hole Entropies at Infinite Distances and Tower of States, Nucl. Phys. B 958 (2020) 115112 [arXiv:1912.07453] [INSPIRE].

    MathSciNet  Google Scholar 

  92. [92]

    D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  93. [93]

    B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett. 121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].

  94. [94]

    D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett. B 797 (2019) 134867 [arXiv:1906.05225] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  95. [95]

    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  96. [96]

    G. Buratti, J. Calderon, A. Mininno and A.M. Uranga, Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua, JHEP 06 (2020) 083 [arXiv:2003.09740] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  97. [97]

    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11 (2019) 075 [arXiv:1807.05193] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  98. [98]

    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  99. [99]

    D. Andriot, Open problems on classical de Sitter solutions, Fortsch. Phys. 67 (2019) 1900026 [arXiv:1902.10093] [INSPIRE].

    MathSciNet  Google Scholar 

  100. [100]

    A. Bedroya and C. Vafa, Trans-Planckian Censorship and the Swampland, JHEP 09 (2020) 123 [arXiv:1909.11063] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  101. [101]

    D. Andriot, N. Cribiori and D. Erkinger, The web of swampland conjectures and the TCC bound, JHEP 07 (2020) 162 [arXiv:2004.00030] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  102. [102]

    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  103. [103]

    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

  104. [104]

    T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  105. [105]

    D. Junghans, Weakly Coupled de Sitter Vacua with Fluxes and the Swampland, JHEP 03 (2019) 150 [arXiv:1811.06990] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  106. [106]

    C. Roupec and T. Wrase, de Sitter Extrema and the Swampland, Fortsch. Phys. 67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE].

  107. [107]

    A. Banlaki, A. Chowdhury, C. Roupec and T. Wrase, Scaling limits of dS vacua and the swampland, JHEP 03 (2019) 065 [arXiv:1811.07880] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Lanza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.15154

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lanza, S., Marchesano, F., Martucci, L. et al. Swampland Conjectures for strings and membranes. J. High Energ. Phys. 2021, 6 (2021). https://doi.org/10.1007/JHEP02(2021)006

Download citation

Keywords

  • D-branes
  • Flux compactifications
  • Supersymmetric Effective Theories