Two-Loop QCD Corrections to the Higgs Plus Three-parton Amplitudes with Top Mass Correction

Abstract

We obtain the two-loop QCD corrections to the Higgs plus three-parton amplitudes with dimension-seven operators in Higgs effective field theory. This provides the two-loop S-matrix elements for Higgs plus one-jet production at the LHC with top-mass correction. We apply efficient unitarity plus IBP methods which are described in detail. We also study the color decomposition of the fermion cuts and find a connection between fundamental and adjoint representations which can be used to reduce non-planar to planar unitarity cuts in the Higgs to three-gluon amplitudes. We obtain final results in simple analytic form which exhibits intriguing hidden structures. The principle of maximal transcendentality is found to be satisfied for all results. The lower transcendentality parts also contain universal building blocks and can be written in compact analytic form, suggesting further hidden structures.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 1 — Accelerator, arXiv:1809.00285 [INSPIRE].

  4. [4]

    CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].

  5. [5]

    FCC collaboration, FCC Physics Opportunities, Eur. Phys. J.C 79 (2019) 474 [INSPIRE].

  6. [6]

    FCC collaboration, FCC-ee: The Lepton Collider, Eur. Phys. J. ST228 (2019) 261 [INSPIRE].

  7. [7]

    FCC collaboration, FCC-hh: The Hadron Collider, Eur. Phys. J. ST228 (2019) 755 [INSPIRE].

  8. [8]

    Z. Xu, D.-H. Zhang and L. Chang, Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in Gauge Theories at High-Energies. 1. General Formalism for Quantum Electrodynamics, Nucl. Phys.B 206 (1982) 53 [INSPIRE].

  10. [10]

    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung Processes in Gauge Theories, Phys. Lett.103B (1981) 124 [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating \( p\overline{p}\to {W}^{\pm }/{Z}^0+ \)J ets, Nucl. Phys.B 262 (1985) 235 [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

  13. [13]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

  14. [14]

    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. [15]

    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. [17]

    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. [18]

    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys.B 106 (1976) 292 [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett.40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett.39 (1977) 1304 [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.30 (1979) 711 [INSPIRE].

    Google Scholar 

  22. [22]

    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys.B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett.B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys.C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

  25. [25]

    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett.79 (1997) 2184 [hep-ph/9706430] [INSPIRE].

  26. [26]

    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O \( \left({\alpha}_S^3\right) \)and their connection to low-energy theorems, Nucl. Phys.B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].

  27. [27]

    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP02 (2012) 056 [arXiv:1112.3554] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. [28]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP06 (2013) 072 [arXiv:1302.6216] [INSPIRE].

    Article  ADS  Google Scholar 

  29. [29]

    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett.B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett.B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun.212 (2017) 239 [arXiv:1605.03190] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP09(2016) 037 [arXiv:1605.05761] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP10 (2016) 066 [arXiv:1607.08817] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    J.M. Lindert, K. Kudashkin, K. Melnikov and C. Wever, Higgs bosons with large transverse momentum at the LHC, Phys. Lett.B 782 (2018) 210 [arXiv:1801.08226] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    S.P. Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence, Phys. Rev. Lett.120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    T. Neumann, NLO Higgs+jet production at large transverse momenta including top quark mass effects, J. Phys. Comm.2 (2018) 095017 [arXiv:1802.02981] [INSPIRE].

    Article  ADS  Google Scholar 

  38. [38]

    A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys.B 661 (2003) 19 [Erratum ibid.B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].

  39. [39]

    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.B 595 (2004) 521 [Erratum ibid.B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

  40. [40]

    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys.B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

  41. [41]

    T. Gehrmann and E. Remiddi, Two loop master integrals for γ 3 jets: The planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

  42. [42]

    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.144 (2002) 200 [hep-ph/0111255] [INSPIRE].

  43. [43]

    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP05 (2012) 082 [arXiv:1201.4170] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. [44]

    A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP08 (2014) 100 [arXiv:1406.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  45. [45]

    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-Shell Methods for the Two-Loop Dilatation Operator and Finite Remainders, JHEP10 (2015) 012 [arXiv:1504.06323] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. [46]

    A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP08 (2016) 134 [arXiv:1606.08682] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. [47]

    F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP12 (2016) 090 [arXiv:1610.06567] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    P. Banerjee, P.K. Dhani, M. Mahakhud, V. Ravindran and S. Seth, Finite remainders of the Konishi at two loops in 𝒩 = 4 SYM, JHEP05 (2017) 085 [arXiv:1612.00885] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. [49]

    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N3LO, Phys. Rev.D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett.118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    L.J. Dixon, The Principle of Maximal Transcendentality and the Four-Loop Collinear Anomalous Dimension, JHEP01 (2018) 075 [arXiv:1712.07274] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. [52]

    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from 𝒩 = 4 super Yang-Mills theory, Phys. Rev. Lett.119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].

    Article  Google Scholar 

  53. [53]

    Q. Jin and G. Yang, Analytic Two-Loop Higgs Amplitudes in Effective Field Theory and the Maximal Transcendentality Principle, Phys. Rev. Lett.121 (2018) 101603 [arXiv:1804.04653] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F3) supersymmetric form factors and maximal transcendentality Part I: 𝒩 = 4 super Yang-Mills, JHEP12 (2018) 076 [arXiv:1804.05703] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. [55]

    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F3) supersymmetric form factors and maximal transcendentality Part II: 0 < 𝒩 < 4 super Yang-Mills, JHEP12 (2018) 077 [arXiv:1804.05828] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. [56]

    Q. Jin and G. Yang, Hidden Analytic Relations for Two-Loop Higgs Amplitudes in QCD, arXiv:1904.07260 [INSPIRE].

  57. [57]

    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett.100B (1981) 65 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. [59]

    R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].

  60. [60]

    D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev.D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. [62]

    H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev.D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  63. [63]

    A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: An algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun.221 (2017) 203 [arXiv:1612.04252] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. [64]

    S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].

    Article  ADS  Google Scholar 

  65. [65]

    S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev.D97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    J.A. Gracey, Classification and one loop renormalization of dimension-six and dimension-eight operators in quantum gluodynamics, Nucl. Phys.B 634 (2002) 192 [Erratum ibid.B 696 (2004) 295] [hep-ph/0204266] [INSPIRE].

  68. [68]

    D. Neill, Two-Loop Matching onto Dimension Eight Operators in the Higgs-Glue Sector, arXiv:0908.1573 [INSPIRE].

  69. [69]

    R.V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling, Phys. Rev.D 88 (2013) 074015 [arXiv:1308.2225] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    S. Dawson, I.M. Lewis and M. Zeng, Effective field theory for Higgs boson plus jet production, Phys. Rev.D 90 (2014) 093007 [arXiv:1409.6299] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev.D 18 (1978) 3998 [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

  73. [73]

    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

  74. [74]

    Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys.322 (2007) 1587 [arXiv:0704.2798] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    Z.-G. Xiao, G. Yang and C.-J. Zhu, The rational parts of one-loop QCD amplitudes I: The general formalism, Nucl. Phys.B 758 (2006) 1 [hep-ph/0607015] [INSPIRE].

  76. [76]

    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. [77]

    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  78. [78]

    R.H. Boels and H. Lüo, A minimal approach to the scattering of physical massless bosons, JHEP05 (2018) 063 [arXiv:1710.10208] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. [79]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. [80]

    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

  81. [81]

    A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].

  82. [82]

    P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

    Article  ADS  Google Scholar 

  83. [83]

    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. [84]

    T. Gehrmann and E. Remiddi, Two loop master integrals for γ 3 jets: The nonplanar topologies, Nucl. Phys.B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

  85. [85]

    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP12 (2004) 015 [hep-th/0411092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. [86]

    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. [87]

    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  88. [88]

    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  89. [89]

    P. Banerjee, P.K. Dhani and V. Ravindran, Two loop QCD corrections for the process Pseudo-scalar Higgs → 3 partons, JHEP10 (2017) 067 [arXiv:1708.02387] [INSPIRE].

    Article  ADS  Google Scholar 

  90. [90]

    S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett.123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

    Article  ADS  Google Scholar 

  91. [91]

    V. Del Duca, C. Duhr, R. Marzucca and B. Verbeek, The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy, JHEP10 (2017) 001 [arXiv:1705.10163] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. [92]

    T. Ahmed, P. Banerjee, A. Chakraborty, P.K. Dhani and V. Ravindran, The Curious Case of Leading Transcendentality: Three Point Form Factors, arXiv:1905.12770 [INSPIRE].

  93. [93]

    R. Bonciani et al., Evaluating a family of two-loop non-planar master integrals for Higgs + jet production with full heavy-quark mass dependence, JHEP01 (2020) 132 [arXiv:1907.13156] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qingjun Jin.

Additional information

ArXiv ePrint: 1910.09384

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Yang, G. Two-Loop QCD Corrections to the Higgs Plus Three-parton Amplitudes with Top Mass Correction. J. High Energ. Phys. 2020, 169 (2020). https://doi.org/10.1007/JHEP02(2020)169

Download citation

Keywords

  • Perturbative QCD
  • Scattering Amplitudes