Charge and color breaking constraints in MSSM after the Higgs discovery at LHC

Abstract

We revisit the constraints on the parameter space of the Minimal Supersymmetric Standard Model (MSSM), from charge and color breaking minima in the light of information on the Higgs from the LHC so far. We study the behavior of the scalar potential keeping two light sfermion fields along with the Higgs in the pMSSM framework and analyze the stability of the vacuum. We find that for lightest stops ≲ 1 TeV and small μ ≲ 500 GeV, the absolute stability of the potential can be attained only for \( \left| {{X_t}} \right|\lesssim \sqrt{{6{m_{{\widetilde{t}1}}}{m_{{\widetilde{t}2}}}}} \). The bounds become stronger for larger values of the μ parameter. Note that this is approximately the value of Xt which maximizes the Higgs mass. Our bounds on the low scale MSSM parameters are more stringent than those reported earlier in literature. We reanalyze the stau sector as well, keeping both staus. We study the connections between the observed Higgs rates and vacuum (meta)stability. We show how a precision study of the ratio of signal strengths, (μ γγ ZZ ) can shed further light.

Change history

  • 26 March 2018

    We have detected an error in the Higgs spectrum calculation in the modified version of SuSeFLAV [1].

References

  1. [1]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    CMS collaboration, Combination of standard model higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (1542387).

  4. [4]

    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  5. [5]

    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. Zoller, Vacuum stability in the SM and the three-loop β-function for the Higgs self-interaction, arXiv:1209.5609 [INSPIRE].

  13. [13]

    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    G. Isidori, Interpreting theHiggs-mass oracle”, talk given at SUSY 2013, August 26-31, ICTP, Trietse, Italy (2013).

    Google Scholar 

  15. [15]

    J. Frere, D. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal low-energy supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    J. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    C. Kounnas, A. Lahanas, D.V. Nanopoulos and M. Quirós, Low-energy behavior of realistic locally supersymmetric grand unified theories, Nucl. Phys. B 236 (1984) 438 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M. Drees, M. Gluck and K. Grassie, A new class of false vacua in low-energy N = 1 supergravity theories, Phys. Lett. B 157 (1985) 164 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Gunion, H. Haber and M. Sher, Charge/color breaking minima and a-parameter bounds in supersymmetric models, Nucl. Phys. B 306 (1988) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    H. Komatsu, New constraints on parameters in the minimal supersymmetric model, Phys. Lett. B 215 (1988) 323 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    P. Langacker and N. Polonsky, Implications of Yukawa unification for the Higgs sector in supersymmetric grand unified models, Phys. Rev. D 50 (1994) 2199 [hep-ph/9403306] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    J. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    D. Albornoz Vasquez, G. Bélanger, R. Godbole and A. Pukhov, The Higgs boson in the MSSM in light of the LHC, Phys. Rev. D 85 (2012) 115013 [arXiv:1112.2200] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0 \)μ + μ and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).

  42. [42]

    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  46. [46]

    J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a color broken phase?, Phys. Rev. D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    D. Chowdhury, R. Garani and S.K. Vempati, SUSEFLAV: program for supersymmetric mass spectra with seesaw mechanism and rare lepton flavor violating decays, Comput. Phys. Commun. 184 (2013) 899 [arXiv:1109.3551] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    MSSM Working Group collaboration, A. Djouadi et al., The minimal supersymmetric standard model: group summary report, hep-ph/9901246 [INSPIRE].

  49. [49]

    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  50. [50]

    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    L. Pearce, A. Kusenko and R. Peccei, Phenomenology of supersymmetric models with a symmetry-breaking seesaw mechanism, Phys. Rev. D 88 (2013) 075011 [arXiv:1307.6157] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  55. [55]

    LHCb collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

    Article  Google Scholar 

  56. [56]

    CMS collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1: a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].

  58. [58]

    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    G. Gamberini, G. Ridolfi and F. Zwirner, On radiative gauge symmetry breaking in the minimal supersymmetric model, Nucl. Phys. B 331 (1990) 331 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    D. Chowdhury, K.A. Mohan, R.M. Godbole and S.K. Vempati, Renormalization scale dependence of CCB in MSSM: complete one-loop study, in preparation.

  61. [61]

    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    M. Carena, S. Gori, I. Low, N.R. Shah and C.E. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  71. [71]

    J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    N. Blinov and D.E. Morrissey, Charge and color breaking constraints in the minimal supersymmetric standard model, arXiv:1309.7397 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirtimaan A. Mohan.

Additional information

ArXiv ePrint: 1310.1932

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Chowdhury, D., Godbole, R.M., Mohan, K.A. et al. Charge and color breaking constraints in MSSM after the Higgs discovery at LHC. J. High Energ. Phys. 2014, 110 (2014). https://doi.org/10.1007/JHEP02(2014)110

Download citation

Keywords

  • Supersymmetry Phenomenology