# Soft factorization in QED from 2D Kac-Moody symmetry

- 59 Downloads

## Abstract

The soft factorization theorem for 4D abelian gauge theory states that the \( \mathcal{S} \)-matrix factorizes into soft and hard parts, with the universal soft part containing all soft and collinear poles. Similarly, correlation functions on the sphere in a 2D CFT with a U(1) Kac-Moody current algebra factorize into current algebra and non-current algebra factors, with the current algebra factor fully determined by its pole structure. In this paper, we show that these 4D and 2D factorizations are mathematically the same phenomena. The soft ‘t Hooft-Wilson lines and soft photons are realized as a complexified 2D current algebra on the celestial sphere at null infinity. The current algebra level is determined by the cusp anomalous dimension. The associated complex U(1) boson lives on a torus whose modular parameter is \( \tau =\frac{2\pi i}{e^2}+\frac{\theta }{2\pi } \)_{.} The correlators of this 2D current algebra fully reproduce the known soft part of the 4D \( \mathcal{S} \)-matrix, as well as a conjectured generalization involving magnetic charges.

## Keywords

Conformal Field Theory Gauge Symmetry Scattering Amplitudes## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]T. He, P. Mitra and A. Strominger, 2
*D Kac-Moody symmetry of*4*D Yang-Mills theory*,*JHEP***10**(2016) 137 [arXiv:1503.02663] [INSPIRE]. - [2]M. Campiglia and A. Laddha,
*Asymptotic symmetries of QED and Weinberg’s soft photon theorem*,*JHEP***07**(2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [3]M. Campiglia,
*Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime*,*JHEP***11**(2015) 160 [arXiv:1509.01408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [4]
- [5]S. Pasterski, S.-H. Shao and A. Strominger,
*Flat space amplitudes and conformal symmetry of the celestial sphere*,*Phys. Rev.***D 96**(2017) 065026 [arXiv:1701.00049] [INSPIRE]. - [6]D. Kapec, V. Lysov, S. Pasterski and A. Strominger,
*Semiclassical Virasoro symmetry of the quantum gravity*\( \mathcal{S} \)*-matrix*,*JHEP***08**(2014) 058 [arXiv:1406.3312] [INSPIRE]. - [7]A. Strominger,
*Asymptotic symmetries of Yang-Mills theory*,*JHEP***07**(2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [8]A. Bassetto, M. Ciafaloni and G. Marchesini,
*Jet structure and infrared sensitive quantities in perturbative QCD*,*Phys. Rept.***100**(1983) 201 [INSPIRE].ADSCrossRefGoogle Scholar - [9]I. Feige and M.D. Schwartz,
*Hard-soft-collinear factorization to all orders*,*Phys. Rev.***D 90**(2014) 105020 [arXiv:1403.6472] [INSPIRE]. - [10]M. Schwartz,
*Quantum field theory and the Standard Model*, Cambridge University Press, Cambridge U.K., (2014) [ISBN:9781107034730] [INSPIRE]. - [11]A. Strominger,
*Magnetic corrections to the soft photon theorem*,*Phys. Rev. Lett.***116**(2016) 031602 [arXiv:1509.00543] [INSPIRE]. - [12]A. Strominger,
*Lectures on the infrared structure of gravity and gauge theory*, arXiv:1703.05448 [INSPIRE]. - [13]T. He, P. Mitra, A.P. Porfyriadis and A. Strominger,
*New symmetries of massless QED*,*JHEP***10**(2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar - [14]D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger,
*Infrared divergences in QED, revisited*,*Phys. Rev.***D 96**(2017) 085002 [arXiv:1705.04311] [INSPIRE]. - [15]Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart,
*Jet physics from static charges in AdS*,*Phys. Rev.***D 85**(2012) 045010 [arXiv:1109.6010] [INSPIRE]. - [16]D. Simmons-Duffin,
*Projectors, shadows and conformal blocks*,*JHEP***04**(2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [17]D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2
*D stress tensor for*4*D gravity*,*Phys. Rev. Lett.***119**(2017) 121601 [arXiv:1609.00282] [INSPIRE]. - [18]F.E. Low,
*Scattering of light of very low frequency by systems of spin*1*/*2,*Phys. Rev.***96**(1954) 1428 [INSPIRE]. - [19]F.E. Low,
*Bremsstrahlung of very low-energy quanta in elementary particle collisions*,*Phys. Rev.***110**(1958) 974 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [20]S. Weinberg,
*Infrared photons and gravitons*,*Phys. Rev.***140**(1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [21]G.P. Korchemsky and A.V. Radyushkin,
*Renormalization of the Wilson loops beyond the leading order*,*Nucl. Phys.***B 283**(1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar - [22]A.V. Manohar,
*Deep inelastic scattering as x*→ 1*using soft collinear effective theory*,*Phys. Rev.***D 68**(2003) 114019 [hep-ph/0309176] [INSPIRE]. - [23]V. Lysov, S. Pasterski and A. Strominger,
*Low’s subleading soft theorem as a symmetry of QED*,*Phys. Rev. Lett.***113**(2014) 111601 [arXiv:1407.3814] [INSPIRE].ADSCrossRefGoogle Scholar - [24]D. Kapec, V. Lysov and A. Strominger,
*Asymptotic symmetries of massless QED in even dimensions*, arXiv:1412.2763 [INSPIRE]. - [25]A. Mohd,
*A note on asymptotic symmetries and soft-photon theorem*,*JHEP***02**(2015) 060 [arXiv:1412.5365] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [26]S.G. Avery and B.U.W. Schwab,
*Noether’s second theorem and Ward identities for gauge symmetries*,*JHEP***02**(2016) 031 [arXiv:1510.07038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [27]K. Colwell and J. Terning,
*S-duality and helicity amplitudes*,*JHEP***03**(2016) 068 [arXiv:1510.07627] [INSPIRE].ADSCrossRefGoogle Scholar - [28]M. Campiglia and A. Laddha,
*Subleading soft photons and large gauge transformations*,*JHEP***11**(2016) 012 [arXiv:1605.09677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [29]E. Conde and P. Mao,
*Remarks on asymptotic symmetries and the subleading soft photon theorem*,*Phys. Rev.***D 95**(2017) 021701 [arXiv:1605.09731] [INSPIRE]. - [30]C. Cheung, A. de la Fuente and R. Sundrum, 4
*D scattering amplitudes and asymptotic symmetries from*2*D CFT*,*JHEP***01**(2017) 112 [arXiv:1609.00732] [INSPIRE].