Journal of High Energy Physics

, 2018:78 | Cite as

GeV-scale hot sterile neutrino oscillations: a numerical solution

  • J. Ghiglieri
  • M. Laine
Open Access
Regular Article - Theoretical Physics


The scenario of baryogenesis through GeV-scale sterile neutrino oscillations is governed by non-linear differential equations for the time evolution of a sterile neutrino density matrix and Standard Model lepton and baryon asymmetries. By employing up-to-date rate coefficients and a non-perturbatively estimated Chern-Simons diffusion rate, we present a numerical solution of this system, incorporating the full momentum and helicity dependences of the density matrix. The density matrix deviates significantly from kinetic equilibrium, with the IR modes equilibrating much faster than the UV modes. For equivalent input parameters, our final results differ moderately (∼50%) from recent benchmarks in the literature. The possibility of producing an observable baryon asymmetry is nevertheless confirmed. We illustrate the dependence of the baryon asymmetry on the sterile neutrino mass splitting and on the CP-violating phase measurable in active neutrino oscillation experiments.


Thermal Field Theory CP violation Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E.K. Akhmedov, V.A. Rubakov and A.Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  2. [2]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  3. [3]
    M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Asaka, S. Eijima and H. Ishida, Kinetic equations for baryogenesis via sterile neutrino oscillation, JCAP 02 (2012) 021 [arXiv:1112.5565] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Drewes and B. Garbrecht, Leptogenesis from a GeV seesaw without mass degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].ADSGoogle Scholar
  7. [7]
    B. Shuve and I. Yavin, Baryogenesis through neutrino oscillations: a unified perspective, Phys. Rev. D 89 (2014) 075014 [arXiv:1401.2459] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Lepton number violation as a key to low-scale leptogenesis, JCAP 11 (2015) 041 [arXiv:1507.06215] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, Leptogenesis in GeV scale seesaw models, JHEP 10 (2015) 067 [arXiv:1508.03676] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Leptogenesis from oscillations of heavy neutrinos with large mixing angles, JHEP 12 (2016) 150 [arXiv:1606.06690] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Eijima and M. Shaposhnikov, Fermion number violating effects in low scale leptogenesis, Phys. Lett. B 771 (2017) 288 [arXiv:1703.06085] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Asaka, S. Eijima, H. Ishida, K. Minogawa and T. Yoshii, Initial condition for baryogenesis via neutrino oscillation, Phys. Rev. D 96 (2017) 083010 [arXiv:1704.02692] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Hambye and D. Teresi, Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism, Phys. Rev. D 96 (2017) 015031 [arXiv:1705.00016] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024 [arXiv:1709.00415] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Eijima, M. Shaposhnikov and I. Timiryasov, Freeze-out of baryon number in low-scale leptogenesis, JCAP 11 (2017) 030 [arXiv:1709.07834] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Antusch et al., Probing leptogenesis at future colliders, arXiv:1710.03744 [INSPIRE].
  19. [19]
    J. Ghiglieri and M. Laine, GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, JHEP 05 (2017) 132 [arXiv:1703.06087] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Bödeker and M. Laine, Kubo relations and radiative corrections for lepton number washout, JCAP 05 (2014) 041 [arXiv:1403.2755] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    I. Ghisoiu and M. Laine, Right-handed neutrino production rate at T > 160 GeV, JCAP 12 (2014) 032 [arXiv:1411.1765] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Ghiglieri and M. Laine, Improved determination of sterile neutrino dark matter spectrum, JHEP 11 (2015) 171 [arXiv:1506.06752] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Bödeker, M. Sangel and M. Wörmann, Equilibration, particle production and self-energy, Phys. Rev. D 93 (2016) 045028 [arXiv:1510.06742] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    J. Ghiglieri and M. Laine, Neutrino dynamics below the electroweak crossover, JCAP 07 (2016) 015 [arXiv:1605.07720] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Bödeker and M. Sangel, Order g 2 susceptibilities in the symmetric phase of the Standard Model, JCAP 04 (2015) 040 [arXiv:1501.03151] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    S.Yu. Khlebnikov and M.E. Shaposhnikov, Melting of the Higgs vacuum: conserved numbers at high temperature, Phys. Lett. B 387 (1996) 817 [hep-ph/9607386] [INSPIRE].
  29. [29]
    S.Yu. Khlebnikov and M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Laine and M. Meyer, Standard Model thermodynamics across the electroweak crossover, JCAP 07 (2015) 035 [arXiv:1503.04935] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. D’Onofrio and K. Rummukainen, Standard Model cross-over on the lattice, Phys. Rev. D 93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  33. [33]
    K. Miura, Y. Hidaka, D. Satow and T. Kunihiro, Neutrino spectral density at electroweak scale temperature, Phys. Rev. D 88 (2013) 065024 [arXiv:1306.1701] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  35. [35]
    A. Donini, P. Hernández, J. López-Pavón, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Bödeker, On the effective dynamics of soft non-Abelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.AEC, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations