Journal of High Energy Physics

, 2018:76 | Cite as

Spherical transverse M5-branes from the plane wave matrix model

  • Yuhma Asano
  • Goro Ishiki
  • Shinji Shimasaki
  • Seiji Terashima
Open Access
Regular Article - Theoretical Physics


We consider matrix theoretical description of transverse M5-branes in M-theory on the 11-dimensional maximally supersymmetric pp-wave background. We apply the localization to the plane wave matrix model (PWMM) and show that the transverse spherical fivebranes with zero light cone energy in M-theory are realized as the distribution of low energy moduli of the SO(6) scalar fields in PWMM.


Field Theories in Lower Dimensions M(atrix) Theories Supersymmetric Gauge Theory M-Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMATHGoogle Scholar
  2. [2]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Transverse five-branes in matrix theory, JHEP 01 (2003) 038 [hep-th/0211139] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    Y. Lozano and D. Rodriguez-Gomez, Fuzzy 5-spheres and pp-wave matrix actions, JHEP 08 (2005) 044 [hep-th/0505073] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Asano, G. Ishiki, S. Shimasaki and S. Terashima, Spherical transverse M 5-branes in matrix theory, Phys. Rev. D 96 (2017) 126003 [arXiv:1701.07140] [INSPIRE].ADSGoogle Scholar
  7. [7]
    W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 [hep-th/0101126] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    H. Ling, A.R. Mohazab, H.-H. Shieh, G. van Anders and M. Van Raamsdonk, Little string theory from a double-scaled matrix model, JHEP 10 (2006) 018 [hep-th/0606014] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Matrix perturbation theory for M-theory on a PP wave, JHEP 05 (2002) 056 [hep-th/0205185] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Kim and J. Plefka, On the spectrum of PP wave matrix theory, Nucl. Phys. B 643 (2002) 31 [hep-th/0207034] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Protected multiplets of M-theory on a plane wave, JHEP 09 (2002) 021 [hep-th/0207050] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    M.M. Sheikh-Jabbari and J. Simon, On half-BPS states of the ABJM theory, JHEP 08 (2009) 073 [arXiv:0904.4605] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Exact results for perturbative partition functions of theories with SU(2|4) symmetry, JHEP 02 (2013) 148 [arXiv:1211.0364] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Emergent bubbling geometries in the plane wave matrix model, JHEP 05 (2014) 075 [arXiv:1401.5079] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Asano, G. Ishiki and S. Shimasaki, Emergent bubbling geometries in gauge theories with SU(2|4) symmetry, JHEP 09 (2014) 137 [arXiv:1406.1337] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    J.-T. Yee and P. Yi, Instantons of M(atrix) theory in PP wave background, JHEP 02 (2003) 040 [hep-th/0301120] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Lin, Instantons, supersymmetric vacua and emergent geometries, Phys. Rev. D 74 (2006) 125013 [hep-th/0609186] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Bachas, J. Hoppe and B. Pioline, Nahm equations, N = 1∗ domain walls and D strings in AdS 5 × S 5, JHEP 07 (2001) 041 [hep-th/0007067] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Kovacs, Y. Sato and H. Shimada, On membrane interactions and a three-dimensional analog of Riemann surfaces, JHEP 02 (2016) 050 [arXiv:1508.03367] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Polchinski, M theory and the light cone, Prog. Theor. Phys. Suppl. 134 (1999) 158 [hep-th/9903165] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014 [hep-th/0509235] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D.E. Berenstein, M. Hanada and S.A. Hartnoll, Multi-matrix models and emergent geometry, JHEP 02 (2009) 010 [arXiv:0805.4658] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    V.G. Filev and D. O’Connor, Multi-matrix models at general coupling, J. Phys. A 46 (2013) 475403 [arXiv:1304.7723] [INSPIRE].ADSMATHGoogle Scholar
  26. [26]
    V.G. Filev and D. O’Connor, On the phase structure of commuting matrix models, JHEP 08 (2014) 003 [arXiv:1402.2476] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Berenstein, D.H. Correa and S.E. Vazquez, All loop BMN state energies from matrices, JHEP 02 (2006) 048 [hep-th/0509015] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Ishiki, S. Shimasaki, Y. Takayama and A. Tsuchiya, Embedding of theories with SU(2|4) symmetry into the plane wave matrix model, JHEP 11 (2006) 089 [hep-th/0610038] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, Fiber bundles and matrix models, Phys. Rev. D 77 (2008) 126015 [arXiv:0802.2782] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, N = 4 super Yang-Mills from the plane wave matrix model, Phys. Rev. D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland
  2. 2.Tomonaga Center for the History of the UniverseUniversity of TsukubaTsukubaJapan
  3. 3.Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  4. 4.Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan
  5. 5.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations