Journal of High Energy Physics

, 2018:71 | Cite as

Extended geometries

Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

We present a unified and completely general formulation of extended geometry, characterised by a Kac-Moody algebra and a highest weight coordinate module. Generalised diffeomorphisms are constructed, as well as solutions to the section constraint. Generically, additional (“ancillary”) gauge transformations are present, and we give a concrete criterion determining when they appear. A universal form of the (pseudo-)action determines the dynamics in all cases without ancillary transformations, and also for a restricted set of cases based on the adjoint representation of a finite-dimensional simple Lie group. Our construction reproduces (the internal sector of) all previously considered cases of double and exceptional field theories.

Keywords

Differential and Algebraic Geometry Space-Time Symmetries String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Palmkvist, Exceptional geometry and Borcherds superalgebras, JHEP 11 (2015) 032 [arXiv:1507.08828] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist and H. Samtleben, Generalized diffeomorphisms for E 9, Phys. Rev. D 96 (2017) 106022 [arXiv:1708.08936] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.H. Peterson and V.G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci. 80 (1983) 1778.ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    W. Siegel, Manifest duality in low-energy superstrings, in Proceedings, Strings 93, Berkeley U.S.A., (1993), pg. 353 [hep-th/9308133] [INSPIRE].
  7. [7]
    S. Rayan, Co-Higgs bundles on P 1, New York J. Math. 19 (2013) 925 [arXiv:1010.2526] [INSPIRE].MathSciNetMATHGoogle Scholar
  8. [8]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C.M. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    O. Hohm, C.M. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    O. Hohm, C.M. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  14. [14]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 85 (2012) 089908] [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  18. [18]
    O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory, J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry, JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Cederwall, The geometry behind double geometry, JHEP 09 (2014) 070 [arXiv:1402.2513] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Cederwall, T-duality and non-geometric solutions from double geometry, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    R. Blumenhagen, F. Hassler and D. Lüst, Double field theory on group manifolds, JHEP 02 (2015) 001 [arXiv:1410.6374] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    R. Blumenhagen, P. du Bosque, F. Hassler and D. Lüst, Generalized metric formulation of double field theory on group manifolds, JHEP 08 (2015) 056 [arXiv:1502.02428] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Coimbra, C. Strickland-Constable and D. Waldram, \( {E}_{d(d)}\times {\mathrm{\mathbb{R}}}^{+} \) generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: \( {E}_{d(d)}\times {\mathrm{\mathbb{R}}}^{+} \) and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  40. [40]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    M. Cederwall, Non-gravitational exceptional supermultiplets, JHEP 07 (2013) 025 [arXiv:1302.6737] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    O. Hohm and H. Samtleben, U-duality covariant gravity, JHEP 09 (2013) 080 [arXiv:1307.0509] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  44. [44]
    O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].ADSGoogle Scholar
  45. [45]
    O. Hohm and H. Samtleben, Exceptional field theory III: E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Cederwall and J.A. Rosabal, E 8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Cederwall, Twistors and supertwistors for exceptional field theory, JHEP 12 (2015) 123 [arXiv:1510.02298] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, JHEP 01 (2016) 164 [arXiv:1510.07859] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP 10 (2017) 086 [arXiv:1707.06693] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, JHEP 08 (2017) 144 [arXiv:1310.4196] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903 [arXiv:1101.0856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    V.G. Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge U.K., (1990).Google Scholar
  53. [53]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].CrossRefMATHGoogle Scholar
  55. [55]
    U. Ray, Automorphic forms and Lie superalgebras, Springer, The Netherlands, (2006).MATHGoogle Scholar
  56. [56]
    V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR Izv. 2 (1968) 1271.CrossRefMATHGoogle Scholar
  57. [57]
    J.-H. Park and Y. Suh, U-gravity: SL(N ), JHEP 06 (2014) 102 [arXiv:1402.5027] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  58. [58]
    M. Cederwall, Double supergeometry, JHEP 06 (2016) 155 [arXiv:1603.04684] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J. Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55 (2014) 011701 [arXiv:1305.0018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    L. Carbone, M. Cederwall and J. Palmkvist, Generators and relations for Lie superalgebras of Cartan type, in preparation.Google Scholar
  61. [61]
    G. Bossard, A. Kleinschmidt, J. Palmkvist, C.N. Pope and E. Sezgin, Beyond E 11, JHEP 05 (2017) 020 [arXiv:1703.01305] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Division for Theoretical Physics, Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations