Journal of High Energy Physics

, 2018:69 | Cite as

Anomalous effects of dense matter under rotation

  • Xu-Guang Huang
  • Kentaro Nishimura
  • Naoki Yamamoto
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the “chiral soliton lattice” of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

Keywords

Effective Field Theories Phase Diagram of QCD Topological States of Matter 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z.-T. Liang and X.-N. Wang, Globally polarized quark-gluon plasma in non-central A+A collisions, Phys. Rev. Lett. 94 (2005) 102301 [Erratum ibid. 96 (2006) 039901] [nucl-th/0410079] [INSPIRE].
  2. [2]
    F. Becattini, F. Piccinini and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C 77 (2008) 024906 [arXiv:0711.1253] [INSPIRE].
  3. [3]
    X.-G. Huang, P. Huovinen and X.-N. Wang, Quark polarization in a viscous quark-gluon plasma, Phys. Rev. C 84 (2011) 054910 [arXiv:1108.5649] [INSPIRE].
  4. [4]
    L.P. Csernai, V.K. Magas and D.J. Wang, Flow vorticity in peripheral high energy heavy ion collisions, Phys. Rev. C 87 (2013) 034906 [arXiv:1302.5310] [INSPIRE].
  5. [5]
    F. Becattini, L. Csernai and D.J. Wang, Λ polarization in peripheral heavy ion collisions, Phys. Rev. C 88 (2013) 034905 [arXiv:1304.4427] [INSPIRE].
  6. [6]
    F. Becattini et al., A study of vorticity formation in high energy nuclear collisions, Eur. Phys. J. C 75 (2015) 406 [arXiv:1501.04468] [INSPIRE].
  7. [7]
    Y. Jiang, Z.-W. Lin and J. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions, Phys. Rev. C 94 (2016) 044910 [arXiv:1602.06580] [INSPIRE].
  8. [8]
    L.-G. Pang, H. Petersen, Q. Wang and X.-N. Wang, Vortical fluid and Λ spin correlations in high-energy heavy-ion collisions, Phys. Rev. Lett. 117 (2016) 192301 [arXiv:1605.04024] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W.-T. Deng and X.-G. Huang, Vorticity in heavy-ion collisions, Phys. Rev. C 93 (2016) 064907 [arXiv:1603.06117] [INSPIRE].
  10. [10]
    STAR collaboration, L. Adamczyk et al., Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62 [arXiv:1701.06657] [INSPIRE].
  11. [11]
    A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20 (1979) 1807 [INSPIRE].
  12. [12]
    A. Vilenkin, Quantum field theory at finite temperature in a rotating system, Phys. Rev. D 21 (1980) 2260 [INSPIRE].
  13. [13]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].
  17. [17]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous transport from Kubo formulae, Lect. Notes Phys. 871 (2013) 433 [arXiv:1207.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Landsteiner, Notes on anomaly induced transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
  19. [19]
    Y. Jiang, X.-G. Huang and J. Liao, Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma, Phys. Rev. D 92 (2015) 071501 [arXiv:1504.03201] [INSPIRE].
  20. [20]
    D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys. 88 (2016) 1 [arXiv:1511.04050] [INSPIRE].
  21. [21]
    H.-L. Chen, K. Fukushima, X.-G. Huang and K. Mameda, Analogy between rotation and density for Dirac fermions in a magnetic field, Phys. Rev. D 93 (2016) 104052 [arXiv:1512.08974] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    Y. Jiang and J. Liao, Pairing phase transitions of matter under rotation, Phys. Rev. Lett. 117 (2016) 192302 [arXiv:1606.03808] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Ebihara, K. Fukushima and K. Mameda, Boundary effects and gapped dispersion in rotating fermionic matter, Phys. Lett. B 764 (2017) 94 [arXiv:1608.00336] [INSPIRE].
  24. [24]
    M.N. Chernodub and S. Gongyo, Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics, JHEP 01 (2017) 136 [arXiv:1611.02598] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    M.N. Chernodub and S. Gongyo, Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions, Phys. Rev. D 95 (2017) 096006 [arXiv:1702.08266] [INSPIRE].
  26. [26]
    A. Yamamoto and Y. Hirono, Lattice QCD in rotating frames, Phys. Rev. Lett. 111 (2013) 081601 [arXiv:1303.6292] [INSPIRE].
  27. [27]
    D.T. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].
  28. [28]
    D.T. Son and M.A. Stephanov, Axial anomaly and magnetism of nuclear and quark matter, Phys. Rev. D 77 (2008) 014021 [arXiv:0710.1084] [INSPIRE].
  29. [29]
    T. Brauner and N. Yamamoto, Chiral soliton lattice and charged pion condensation in strong magnetic fields, JHEP 04 (2017) 132 [arXiv:1609.05213] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP 02 (2015) 169 [arXiv:1207.5806] [INSPIRE].
  31. [31]
    D.-F. Hou, H. Liu and H.-c. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma, Phys. Rev. D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].
  32. [32]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95.Google Scholar
  33. [33]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].
  34. [34]
    K. Fukushima and K. Mameda, Wess-Zumino-Witten action and photons from the chiral magnetic effect, Phys. Rev. D 86 (2012) 071501 [arXiv:1206.3128] [INSPIRE].
  35. [35]
    T.D. Cohen and N. Yamamoto, unpublished.Google Scholar
  36. [36]
    K. Nomura, S. Ryu, A. Furusaki and N. Nagaosa, Cross-correlated responses of topological superconductors and superfluids, Phys. Rev. Lett. 108 (2012) 026802 [arXiv:1108.5054] [INSPIRE].
  37. [37]
    G.E. Volovik and A. Vilenkin, Macroscopic parity violating effects and He-3-A, Phys. Rev. D 62 (2000) 025014 [hep-ph/9905460] [INSPIRE].
  38. [38]
    D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].
  39. [39]
    D.T. Son, M.A. Stephanov and A.R. Zhitnitsky, Instanton interactions in dense matter QCD, Phys. Lett. B 510 (2001) 167 [hep-ph/0103099] [INSPIRE].
  40. [40]
    T. Brauner and S. Kadam, Anomalous electrodynamics of neutral pion matter in strong magnetic fields, JHEP 03 (2017) 015 [arXiv:1701.06793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Y. Hidaka, K. Kamikado, T. Kanazawa and T. Noumi, Phonons, pions and quasi-long-range order in spatially modulated chiral condensates, Phys. Rev. D 92 (2015) 034003 [arXiv:1505.00848] [INSPIRE].
  42. [42]
    T.-G. Lee, E. Nakano, Y. Tsue, T. Tatsumi and B. Friman, Landau-Peierls instability in a Fulde-Ferrell type inhomogeneous chiral condensed phase, Phys. Rev. D 92 (2015) 034024 [arXiv:1504.03185] [INSPIRE].
  43. [43]
    N. Yamamoto, Axion electrodynamics and nonrelativistic photons in nuclear and quark matter, Phys. Rev. D 93 (2016) 085036 [arXiv:1512.05668] [INSPIRE].
  44. [44]
    S. Ozaki and N. Yamamoto, Axion crystals, JHEP 08 (2017) 098 [arXiv:1610.07835] [INSPIRE].
  45. [45]
    Z. Qiu, G. Cao and X.-G. Huang, On electrodynamics of chiral matter, Phys. Rev. D 95 (2017) 036002 [arXiv:1612.06364] [INSPIRE].
  46. [46]
    K. Mameda and A. Yamamoto, Magnetism and rotation in relativistic field theory, PTEP 2016 (2016) 093B05 [arXiv:1504.05826] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Xu-Guang Huang
    • 1
    • 2
  • Kentaro Nishimura
    • 3
  • Naoki Yamamoto
    • 3
  1. 1.Physics Department and Center for Particle Physics and Field TheoryFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)Fudan UniversityShanghaiChina
  3. 3.Department of PhysicsKeio UniversityYokohamaJapan

Personalised recommendations