Journal of High Energy Physics

, 2018:68 | Cite as

Three-dimensional dualities with bosons and fermions

Open Access
Regular Article - Theoretical Physics


We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.


Chern-Simons Theories Duality in Gauge Field Theories Global Symmetries Topological States of Matter 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.E. Peskin, Mandelstam ’t Hooft duality in Abelian lattice models, Annals Phys. 113 (1978) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C. Dasgupta and B.I. Halperin, Phase transition in a lattice model of superconductivity, Phys. Rev. Lett. 47 (1981) 1556 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Phys. Rev. B 89 (2014) 235116 [arXiv:1201.4393] [INSPIRE].
  4. [4]
    D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
  5. [5]
    C. Wang and T. Senthil, Dual Dirac liquid on the surface of the electron topological insulator, Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].
  6. [6]
    A.C. Potter, M. Serbyn and A. Vishwanath, Thermoelectric transport signatures of Dirac composite fermions in the half-filled Landau level, Phys. Rev. X 6 (2016) 031026 [arXiv:1512.06852] [INSPIRE].
  7. [7]
    C. Wang and T. Senthil, Composite Fermi liquids in the lowest Landau level, Phys. Rev. B 94 (2016) 245107 [arXiv:1604.06807] [INSPIRE].
  8. [8]
    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].
  10. [10]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
  13. [13]
    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].
  14. [14]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
  15. [15]
    O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N c) and U(N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].
  16. [16]
    A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].
  17. [17]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].
  19. [19]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].
  21. [21]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2 + 1)-dimensional Majorana fermions, Phys. Rev. B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].
  24. [24]
    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].
  25. [25]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, JHEP 01 (2018) 109 [arXiv:1706.08755] [INSPIRE].
  26. [26]
    A. Karch, B. Robinson and D. Tong, More Abelian dualities in 2 + 1 dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].
  27. [27]
    K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11 (2017) 018 [arXiv:1709.01083] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases of adjoint QCD 3 and dualities, arXiv:1710.03258 [INSPIRE].
  29. [29]
    G. Gur-Ari and R. Yacoby, Three dimensional bosonization from supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].
  31. [31]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].
  32. [32]
    C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].
  33. [33]
    J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact boson-fermion duality on a 3D Euclidean lattice, Phys. Rev. Lett. 120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].
  34. [34]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].
  35. [35]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Armoni and V. Niarchos, Phases of QCD 3 from non-SUSY Seiberg duality and brane dynamics, arXiv:1711.04832 [INSPIRE].
  37. [37]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global symmetries, counterterms and duality in Chern-Simons matter theories with orthogonal gauge groups, arXiv:1711.10008 [INSPIRE].
  38. [38]
    O. Aharony, S. Jain and S. Minwalla, Flows, fixed points and duality in Chern-Simons-matter theories, to appear.Google Scholar
  39. [39]
    N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  40. [40]
    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
  41. [41]
    O.I. Motrunich and A. Vishwanath, Emergent photons and new transitions in the O(3) σ-model with hedgehog suppression, Phys. Rev. B 70 (2004) 075104 [cond-mat/0311222] [INSPIRE].
  42. [42]
    C. Xu and Y.-Z. You, Self-dual quantum electrodynamics as boundary state of the three dimensional bosonic topological insulator, Phys. Rev. B 92 (2015) 220416 [arXiv:1510.06032] [INSPIRE].
  43. [43]
    D. Radičević, Disorder operators in Chern-Simons-fermion theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [INSPIRE].
  45. [45]
    S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].
  46. [46]
    M. Barkeshli and M. Cheng, Time-reversal and spatial reflection symmetry localization anomalies in (2 + 1)D topological phases of matter, arXiv:1706.09464 [INSPIRE].
  47. [47]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].
  48. [48]
    S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality in WZW models and Chern-Simons theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].
  49. [49]
    E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality of WZW fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863 [INSPIRE].
  50. [50]
    D. Verstegen, Conformal embeddings, rank level duality and exceptional modular invariants, Commun. Math. Phys. 137 (1991) 567 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104 [INSPIRE].
  52. [52]
    S.G. Naculich and H.J. Schnitzer, Level-rank duality of the U(N) WZW model, Chern-Simons theory and 2D qYM theory, JHEP 06 (2007) 023 [hep-th/0703089] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.INFN, Sezione di TriesteTriesteItaly
  3. 3.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations